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CHAPTER1

UNITS AND NOTATION

1.1 SYSTEMS OF UNITS

1.1.1 THE SI SYSTEM

The International System of Units is based on six basic
units: 1) meter, 2) kilogram, 3) second, 4) ampere, 5)
degree kelvin, and 6) candela.

1.1.2 STANDARD ABBREVIATIONS FOR SI

A - ampere Np - neper

ac - alternating current PF - power factor

C - coulomb rad - radian

cps - cycle per second RLC - resistance-inductance-
capacitance

de - direct current rms - root-mean-square

dB - decibel rps - revolutions per second

eV - electron volt s - second

F - farad V - volt

ft -  foot VA - voltampere

g - gram W - watt

H - henry Wh - watthour

h - hour F - degree Farenheit

Hz -  hertz °C - degree celsius

J - joule 'K - degree kelvin

kg - kilogram 2 - ohm

m - meter iy - mho

min - minute

mks - meter-kilogram-second

N - newton

Nem- newton-meter



1.1.3 THE MKS AND CGS SYSTEM (METRIC SYSTEM)

(m,kg,sec) (cm, g, sec)
MKS CGS
1. Length (%) meter centimeter (cm)
2. Mass (m) kilogram gram (g)
3. Time (t) second second
4. Force (F or f) *Note: F[N] =
m[kg] x Acceleration (a)
[m/s?] newton Dyne
5. Work and Energy (W or w) newton- Dyne-centi-
meter meter (or
(joule) Erg)
6. Power (P or p) joule/sec
(watt)

1.1.4 THE ENGLISH SYSTEM

1. Length -~ yard (yd)
2. Mass + slug

3. Time + second

4. Force -+ Pound (1b)

5. Energy -+ foot-pound (ft-1b)

1.1.5 UNITS CONVERSION BETWEEN ENGLISH MKS

AND CGS SYSTEMS

English

MKS

CGS

Length: 1 yd = 0.914m
1in = 0.0254m

Im = 39.37in = 100 cm| 2.54cm = 1 in

Mass: 1 slug = 14.6 kg| 1 kg = 1000 g
0.45359237 kg = 1 lbm
Force: 11b=4.45N IN = 0.22481 Ibg
IN = 100,000 dynes




‘English MKS CGS
Energy: 11 ft-1b = 1.356 J| 13 = 0.7376 ft-1b=1Nm | 1J=10" ergs
Power: 1J/s = 0.7376 ft-1bg/s
= 11745.7 hp
Temperature{ "F =3 C°+ 32 | C = o (F°-32)

1.2 LAWS OF UNITS

1. In each term of an equation, the units of measurement

must be the same.

2. Only one system of units is used with any one equation;
both sides of the equality must be of the same system.

1.3 UNIT OF CHARGE AND

COULOMB’S
Charge: Symbol » ' Q -
.q -

Unit + Coulomb

Coulomb’s Law:

LAW

constant .charge
time-varying or instantaneous
value of charge, i.e., g(t).

(C). (Note: the charge of an
electron = -1.60219 x10%°C,
where 1 C (negative) = com-
bined charge of about 6.24
x 108 electrons.
The charge of one proton =
+1.602 x 10—19C.)

F= leQZ =

o)
o
|

dnmey d2

1 QIQZ [N]




where k = 9 x 10° N-m?/C? = proportionality constant

Q +Q;
d
and g

Note:

2) In a vaccum: K =1 and

= (4meg)?t

charge of 2 bodies in coulomb

= separated distance between 2 charged bodies

= permittivity of free space = 8.85 x 10 2 C2?/N »m?

1) For any material:

¢ =permittivity of the

material = K €y,
where K = dielectric econstant

€ = €9,

.4 SCIENTIFIC NOTATION

Power of Ten Prefix Abbreviation
10~ 18 atto a
10- % femto f
* 10”12 pico P
*  107° nano n
*  10°® micro i
* 10-3 milli m
* 1072 centi c
* 107! deci d
10? deka da
102 hecto h
* 108 kilo k
*  10° mega M
* 10° giga G
10 tera T

(* - most frequently used)




CHAPTER 2

RESISTIVE CIRCUITS AND
EXPERIMENTAL LAWS

2.1 CURRENT, VOLTAGE, POWER
AND ENERGY

2.1.1 CURRENT

Definition:
The measurement of the rate of the number of charges
moving through a given reference point in a circuit in 1

second. For steady current,

-+|Q

where q is the net charge passing through the point in t
seconds.

Unit of current = ampere (A) = 1 coulomb of charge moving
past a point in 1 second.

Instantaneous current (i) = time rate of change of charge =
dgq
dat -

Current Flow: The current flow in a wire is opposite to the
motion of the electrons by convention. (See Fig.)



Motion of Electron
Note:.Current ourrent motion
flow in the

opposite

. €3
direction of Direc %on
the fiqure is electric
e 1igu field
given a nega-
tive sign.
Detail of an
electrical wire
Direct Current (DC): A current which is constant due to a

steady, unchanging, unidirectional flow of charge.

i(t)
— t
Alternating Current (AC): Sinusoidal time varying current,
e.g., household current.
i)t
ANVIE.

2.1.2 VOLTAGE

Definition:

The voltage (V or v), or the potential difference
between two points, is the measure of the work required to
move a unit charge from one point to another.

Unit of voltage = volt = 1 joule/coulomb

Voltage Sign Convention:

Assume a positive current supplied by an external
source is entering terminal 1. Then,



1 1 1

1+0——1

1- 1+ 1-
V=-1V V=+1V V=41V V=-
2= — 2+ 2- 2+ —

A B C

Terminal 1 is 1 volt positive with respect to terminal 2 -
Figs. C & D and Terminal 2 is 1 volt positive with respect

to terminal 1 - Figs. A & B.

2.1.3 POWER AND ENERGY

Definition:
(p)power [watts] = v[volts] x i[amperes]

Efficiency: n = power output

power input 0<n <1

Energy:
Since power (p) is the time rate of energy transfer
(p=dw)
dt
t2
W = I pdt
t1

(the energy transferred during a given time interval x) or,
W(Energy in watt-seconds or joules) = p(power in watts)

x t(time in seconds).

>~—l
v




Energy and Voltage Relationships:

1. voltage drop positive released
across element ~  energy

2. voltage rise ———»positive generated
energy

Lt

2.2 TYPES OF CIRCUIT ELEMENTS
2.2.1 INDEPENDENT VOLTAGE SOURCE

Characteristics:

1. The voltage between the two terminals is independent of
the current through it.

2. The same amount of voltage output is supplied
continuously regardless of the amount of current drawn
from it.

Types:

A)° time-varying 1(e)

v(t)



B) time-invarying (independent DC voltage source)(i.e.,
constant terminal voltage).

i 0

2.2.2 INDEPENDENT CURRENT SOURCE

Characteristic:

The current supplied by the source is fixed to a load
and is completely independent of the voltage across it.

Circuit symbol:

r®

Note: Both independent current and voltage sources are
approximations for a physical element.

2.2.3 DEPENDENT VOLTAGE AND CURRENT SOURCES

Circuit symbol:

(a) dependent (b) dependent
voltage source current source

Characteristic:

The source quantity of a dependent source is
determined by a voltage or current existing at some other
location in the electrical system under consideration.
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2.3 RESISTANCE AND CONDUCTANCE

2.3.1 RESISTANCE

The measure of the tendency of a material to impede the
flow of electric charges through it.

Circuit symbol:

+
Re v

R = vresistance of the resistor having units
[volts/ampere] or ohm (). .

2.3.2 CONDUCTANCE

The reciprocal of resistance, or the ratio of current to
voltage, i.e.,

G = [mho(¥)].

L
v

==

2.3.3 RESISTIVITY

p, the characteristic of a material which indicates how
much a material impedes current flow.

R = -‘%L— (at constant temperature)

R = resistance in ohms

2 = length [m]

A = cross-sectional area [m? ]
p = resistivity [Q-m]

A

7,
¥ Conductor
N —— s —

2



Note: Resistivity is low in a good conductor but high in a
poor conductor (insulator).

2.3.4 RESISTOR AND CONDUCTOR
COMBINATIONS

For Series Combination of N Resistors

R_ =R,+ R,+...+R

eq N
or

1.1, 1 1

e "G.tq *ta

eq N

For Parallel Combination of N Resistors

1 1 1 1
N B o
R, Ri R, Ry

or
Ggq = Ga+ Go+ ...+ Gy

2.4 VOLTAGE AND CURRENT DIVISION
2.4.1 VOLTAGE DIVISION
Circuit diagram:

i
—>+va- +Vb -

o Ra R

11



Formula:

R
b
VvV, = V
b Ra+Rb
2.4.2 CURRENT DIVISION
Circuit diagram:
i——
+ .
Ha [l
v Gy 3Gy
Formula:
i, = Gb i-= Ra i
b Ga+Gb Ra+Rb

2.5 OHM’S LAW

The voltage across a conducting material is directly
proportional to the current through the material, i.e., v =
Ri, where R(resistance) is the proportionality constant.

1]
w

slope = v/i

12



Hence, absorbed power in a resistor is given by

p=Vi = i2R = V2/R.

Note: This power is in the form of heat because a resistor
is a passive element; it neither delivers power nor
stores energy.

Short Circuit: Circuit as a zero ohms resistance, i.e.,
voltage across a short circuit = 0.

Open Circuit: Circuit as an infinite resistance, i.e.,
current across an open circuit = 0.

2.6 KIRCHHOFF’'S LAW

2.6.1 KIRCHHOFF’S CURRENT LAW
The algebraic sum of all currents entering a node

equals the algebraic sum of all currents leaving it, i.e., for
a given node,X currents entering = I currents leaving or

2.6.2 KIRCHHOFF’S VOLTAGE LAW

The algebraic sum of all voltages around a closed loop
(or path) is zero, i.e., for a closed loop, I potential rises
= I potential drops.

13



CHAPTER3

TRANSIENT CIRCUITS

3.1 CAPACITOR AND CORRESPONDING
VOLTAGE, CURRENT AND POWER
RELATIONSHIPS

3.1.1 PARALLEL PLATE CAPACITOR

q, coulombs

Surface area,
i A

Slope C = %

+q 0 v, volts
dielectric (insulated
{-xl /4/{@22287 material of permittivity,
- L /] £)
X5 o '
voltage (volt)

(potential existing between points X, and X,
due to charge accumulation)

AH (where K = ¢€/eg¢g = relative

dielectric constant) = % [Coulombs/volt or farad (F)]

Capacitance (C) = Kego

or C =q(t)/v(t) (time variant)
(Note: ¢€g¢ (for air or vaccum) =8.854 pF/m = ('3716?] nF/m)

14



Circuit Symbol: .
i ¢ 4 c
Tib—  or Tt
+ v ~ v

Capacitor Voltage, Current, Power and Energy:

’ t
1 .
t) = = i(t)drt
vy = 2 [ (
. _da(t) _ ~ dv(t)
i =5 ~C &
_ dv
p = Cv [‘—ifl
and
W = 1C v? '4 = stored energy [joules]
or
- Q?
W= %

Characteristic:
A capacitor acts as an. open circuit to de.

3.2 INDUCTOR AND TRANSFORMER

3.2.1 IRON-CORE INDUCTOR

Magnetic material

N turns

£ (mean length)

15



2
Inductance (L) = -Elg'—é‘- where N = no. of turns of coil
U = permeability of core
A = cross-sectional area of core
£ = mean length of core.

(Note: permeability of vacuum p, = 47 x 10~7,)
2

Magnetic, ¢(t) = [ I;jA i(t) = L i(t).

flux

Magnetic field intensity, H = I%’i [A-turn/m].

% = length of material through which ¢ travels.

e
1]

current flowing in the coil.

Flux density, B = yH = ¢/A [telsa (T) or wb/m?2 ].
B-H Curve:
B straight-line approximation
for U = constant and
H<H
Note: for
H U = constant
H(saturated) 92
i NA
3.2.2 INDUCTOR
Concept of Self-Inductance:
magnetic
flux field =L
b (t) =¢
1
i(r) - 9)

v
circuit symbol

16



Inductance (L) = E%‘fﬁ [henry(H) or volt-second/ampere].

Voltage v(t) = N(no. of turns of coil) x -déL‘(;t)-

(rate of change of ¢ with
respect to time), or

_Nd¢@) di _ di(t)
v(t) = =g a - et

i(t) = v dt

=
1
Bt

o - s di
p=vi = Lg [W].

An inductor acts as a short circuit to de.
3.2.3 MUTUAL INDUCTANCE

Definition:

The coupling of two coils such that the change of flux
produced by one will link the other, resulting in an
induced voltage across each coil. (See Fig.)

17



¢ primary

From the figure above,

va(t) = ———-Md(litl M ang vy(t) = ———Mdiﬁ(t)
or, by Faraday's law,
N _d¢ N,d¢
- 2 'm - P
Vz(t) = _d't—— and Vl(t) = at y
where
M = proportionality constant between 2 coils

mutual inductance

K vI,L, [Henry (H) or volt- second/ampere];

®m
¢P

K = coupling coefficient =

3.2.4 DOT NOTATION

Assigning the dots on a pair of coupled coils:

N om Yo
I p ) E—
@ Tz‘h 7
P 4 ;
aJrp g
—Tt 1O,
¢ 9

R R e ©)

18



Procedure:

1. Select current direction in one of the coils.

2. Assign a dot to where the current enters the winding.
(Note: This is the positive terminal with respect to point
a.)

3. Use the right-hand rule to assign flux direction.

4. By Lenz's law, assign opposite flux direction for the
second coil.

5. Use right-hand rule to assign current direction.
6. Assign a dot to where the current leaves the winding.

7. Obtain simplified diagram as shown:
jg:

Sign of mutual inductance M:

Wow

M(+) M(+)

E o

M(-) M(-)

"

M = + (Both currents pass through coils and are either
leaving or entering dots.)

M = - (If arrow indicating current direction through coil is
entering the dot for one coil and leaving the dot for
another.)

.19



3.2.5 IRON-CORE TRANSFORMER

primary secondary

T/\I\T

core of magnetic materials

Turns ratio:  The determination of how much a transformer
steps up or steps down a voltage.

no. of turns on the primary (N )
Turns ratio = P

no. of turns on the secondary(NS)

T

v
_£=i
°VN

Ng

"N—'

m“l*o"‘
)

Voltage step—-up transformer Np< Ns:

primary secondary
SOURCE ; I” E LOAD

Voltage step—down transformer N p > Ns:

primary secondary

SOURCE ; Il é LOAD

20



3.3 SIMPLE RL AND RC CIRCUITS

3.3.1 SOURCE FREE RL CIRCUIT

i(t)T L3v

Properties: Assume initially i(0) = I,.

+vL=Ri+Ld—1=0.

a) v at

R

-Rt/L _ -t/

b) i(t) =1ee I , T = time constant

L
R

c) Power dissipated in the resistor =

P, =i’R = 1¢Re R/T,

d) Total energy in terms of heat in the resistor =
wp =14 LI 2

3.3.2 SOURCE FREE RC CIRCUIT

i(t) —

c -['[tv (t) :&R

Properties: Assume initially v(0) =V,

dv v o
a) C d_t +§ = 0.
b) V(t) =V(0)—e-t/RC - Voe-t/RC.

21



(Note: '} RC =time constant = t.

t
c)(—I: [i(‘[)d’t +i(t)R =0

-t

i(t) = i(0)e BC

3.4 NATURAL AND FORCED
'RESPONSE OF RL AND RC
CIRCUITS

3.4.1 NATURAL RESPONSE

The complementary solution of a linear differential
equation.

3.4.2 FORCED RESPONSE

The particular solution of a linear differential
equation.

3.4.3 A GENERAL DIFFERENTIAL EQUATION
For: ?Tlt + Pi = Q, where Q = forcing function,

P = general function of time.

Solution: i-= e_pt [ ertdt + Ae—pt.

. -pt
Note: For a source free circuit, Q = 0, i = Ae’P
—

natural response;

22



and for Q(t) = const. if =Q/P
e p———
forced response;

and for a complete response:

i(t) =% + Ae

_pt

Complete response = natural response + forced response

Total solution =
solution.

complementary

solution +

particular

3.4.4 PROCEDURE TO FIND THE COMPLETE
RESPONSE f(t) OF RL AND RC
CIRCUITS WITH DC SOURCES

RL RC
1. Simplify the circuit L R c
by "killing" all in- eq’ eq eq’ “eq
dependent sources (¥t =L [/ ) (*1T=R_C )
and determine: eq eq €q €q

2. Consider: —— 8 »

and use dc-analysis
to find:

Le Vv short circuit
IL( 0-)

cuit
v c( 07)

C ~ open cir-

3. Repeat procedure 2
to find the forced

j.e., f(t)as t » =

response: (=)
4. Obtain the total i.e.,
response as the sum
of the natural and £(t) = act/ T, £ ©)

forced responses:

23



RL RC

5. Determine f( 0+) by iL(0+) = Vc(0+) = v 0)
considering the i (07)
conditions: L
6. Then: £(0%) = A + f(®) and
£(t) = [£00%) - £(=)le”t Ta £(w)

Killing: setting them equal to zero

3.5 THE RLC CIRCUITS
3.5.1 PARALLEL RLC CIRCUIT (source free)

Circuit diagram:

"

v
RS L?l c4

KCL equation for parallel RLC circuit:
t

J vdt- ity +Cov = 0;
to

1
t L

ol <

and the corresponding linear, second-order homogeneous
differential equation is

d2v ,1 dv v _
Caz *Ra "t -
General solution:
vV = AleSlt + Azes zt,

24



where

_ -1 1 12_1
12 = 3rc * [ZRC] LC

or
Si1p7 -a* /a7
where o = exponential damping coefficient neper frequency
- 1
2RC
and wy = resonant frequency = —1_
VLC

3.5.2 SPECIAL RESPONSE OF PARALLEL
RLC CIRCUIT

a) Overdamped b) Critical damping c) Underdamped
Condition 1) a > w o= Wy o < wy
or if LC > 4R?C? or LC =4RC?
or L =4RC
2) S;and S, = S;= S,=q0 S, and S, compose
negative real of real and complex
numbers, i.e., quantities.
|/a2 —woz < o

or (-a-vo2-yg2
< (mat+v/az-gd
<0

Sit,, Spt | v(t) = e %A, l0d

S1t Lo vit)=A,ettrALe

3) v(t) ~A,e
as t»> o

+ Aze]wdt)

25



a) Overdamped b) Critical damping c¢) Underdamped

where wo =

Natural Resonant
Frequency
or

v(t) = e

{(Al +A>3)
ejwdt + e-jwdt +
L 2 _
j(AL - A2)
—ejwdt ) e-jwdt_ }
L2 _

or

v(t) = e

[(A1 + Az)cos wgt +
j(A1 - Az)sin wdt]

Graphic representation:
critically damped

v(t)

overdamped
underdamped

3.5.3 SERIES RLC CIRCUIT (source free)

Circuit diagram:

26



KVL equation for series RLC circuit:

t
s 1 di —
R1+(-: Ildt+Ldt-vc(to)—0
to
and the corresponding second-order differential equation in
terms of i:
d di i _
L gz + R at +c—' =0
or in terms of v:
d%% av,
LC gz *RCg - V. =0

Special response of series RLC circuit:

a) Overdamped b) Critical damping c) Underdamped
=R, = =
,12-71“ §,=8,= o S, = tjuy
[R]2 Wq T Voo
= -0 /a2y 02
where o = R/2L,
Wo = 1/ VLC,
. S . -ot -
i(t) = Aje 1t+A2eSzt i(t)=e o (A +A3) i(t)=e o‘t(Blcosoudt
+stinwdt

3.5.4 COMPLETE RESPONSE OF RLC CIRCUIT

The general equation of a complete response of a

second-order system in terms of voltage for an RLC circuit
is given by,

27



S
v(t) = Vf + Ae 1t + BeSzt
- N e

forced response natural response

(i.e., constant for
DC excitation)

Note: A and B can be obtained by

1) substituting v att = 0"

2) taking the derivative of the response, i.e.,

%— = 0+8S:A Sty S,B eszt, where
dv att = 0" is known.

dt

28



CHAPTER4

NETWORK THEOREMS

4.1 LINEARITY AND SUPERPOSITION

4.1.1 LINEARITY

1) A linear element: A passive element that can be
represented by a linear voltage-current relationship.

2) A linear dependent source: A dependent current or
voltage source whose output current or voltage is
proportional only to the first power of some current or
voltage variable in the circuit or to the sum of such
quantities.

3) A linear vcircuit: A circuit composed entirely of
independent sources, linear dependent sources and linear
elements.

4.1.2 SUPERPOSITION THECREM

The network response in any linear resistive network
with zero initial conditions can be obtained by summing all
the individual voltages or currents caused by each
independent source acting alone. With all other independent
sources set equal to zero, i.e., independent voltage sources
are replaced by short circuits and independent current
sources are replaced by open circuits.
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4.2 THEVENIN’'S AND NORTON’S
THEOREMS

4.2.1 THEVENIN’S THEOREM

In any linear network, it is possible to replace every-
thing except the load resistor by an equivalent -circuit
containing only a single voltage source in series with a
resistor (Rth Thevenin resistance), where the response

measured at the load resistor will not be affected.

Rth

Linear [—x

v EMA,_.__.
N |
Active i v !
v =] "th !
Network ey v L—j—'y

Procedures to find Thevenin equivalent:
1) Solve for the open circuit voltage Voc across the output

terminals. V c = Vt

o h

2) Place this voltage Voo in series with the Thevenin

resistance which is the resistance across the terminals
found by setting all independent voltage and current
sources to zero. (i.e., short circuits and open circuits,
respectively.)

4.2.2 NORTON’S THEOREM

Given any linear circuit, the passive and active
components can be converted into an equivalent two-terminal
network consisting of a single current source in parallel
with a resistor (R . - Norton resistance).

N
Linear ——ex E— ------ -: X
Active ) h
I L}
Network 1 D1y SFy |
4 L - - J y
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Procedures to find Norton equivalent:

1) Setting all sources to zero (i.e., voltage sources + short
circuits, and current sources - open circuits). Then
find resulting resistance RN between the output
terminals.

2) IN is the current through a short circuit applied to the

two terminals of the given network.

The Norton's equivalent is obtained by connecting

current source IN and RN in parallel.

4.3 MAXIMUM POWER TRANSFER
THEOREM

Maximum energy transfer occurs between the driving
source and the load, if the following condition is satisfied:

RL = Rth (for Thevenin equivalent circuit),

or

R R (for Norton equivalent circuit).

L N

4.4 MILLMAN’S THEOREM

The theorem states that voltage sources connected in
parallel can be reduced to one equivalent circuit.
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General Procedures: The application of Millman's theorem)

iRa ir:b f:c RL ‘%‘RL
I® 1

; ‘-I-Va c E_

Millman's theorem

1) Given a similar circuit as above, convert all voltage
sources to current sources and resistance to conductance
into an equivalent parallel circuit as shown below:

2) Combine all parallel current sources and all conductance
in parallel.

R
Vi —®1¢c

3) Convert the resulting equivalent current source to a
voltage source and the equivalent conductance to an
equivalent resistance.

(Note: R = and V=x.)

L
G

Q=

4.5 SUBSTITUTION (COMPENSATION)
THEOREM

Any network branch voltage or branch current can be
replaced by a current or a voltage source which will
maintain the same voltage across the chosen branch, and
the same current through the branch.
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4.6 RECIPROCITY THEOREM

In a linear, single-source network, the current I
produced in any branch of the network because of the
single voltage source is interchangeable with the location of
the voltage source without a change in current.
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CHAPTERS

USEFUL TECHNIQUES
OF CIRCUIT ANALYSIS

5.1 MATRICES

5.1.1 A GENERAL FORM OF A
RECTANGULAR MATRIX R

a a4y,. .. 4a
1 12 lN
R = a Qx. .. 4
21 2 AN
a a ...a
M1 M MN
a,., = elements of a matrix

1]
i = row
j => column

(Special case: M =N, is a square matrix.)

5.1.2 ADDITION, SUBTRACTION AND
MULTIPLICATION OF MATRICES

Consider matrices X = [Xij] and Y = [yij]'

m x § matrix 2 x N matrix
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Addition and Subtraction:

+ = +
X*Y [xij + yi].]

Multiplication:

2

= I
XY op ik Tkj’
where i =1,...,M
and j=1,...,N

Note: (X+Y)+Z = X+(Y+Z)
(X+Y)Z = XZ +YZ
(XY)Z = X(YZ)

XY # YZ (in general)

5.1.3 PROPERTIES OF MATRICES

1) Diagonal matrix: D =

2) Unit or identity matrix:

I is also a square matrix.

3) Transpose of a matrix:

xhHT = x
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x+¥)T = xT +yT

T

(kX)T kX (where K is a scalar multiple)

)T = yTxT

4) Power of matrix:

X = x X ... X

n times

5) Inverse of a matrix:
If X is a square matrix, its inverse is X ~! such that

X x-! =1

Note: X-X =1 = Xx°1!

(Xy)~! = y-x-!

5.2 DETERMINANTS

§5.2.1 THE DETERMINANT

In general, given a matrix X i.e.,

X b ¢ eee X
n © iN
= X X e X ’
X 2 22 N
b'q

Nt EN, U NN

the determinant of X (Ax) can be expressed in terms of
minor (A].k) as follows:
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- IPNLE! i\t 2 _4,JN
le( 1) A]l + sz( 1) A].2 +...+ XjN( 1) A

><|>
|

iN
N j+n
= I x, (-1)""A,  — along row j.
n=1 N n
_ _141+K _1y2+K _1yN+K
Ax = le( 1) A1K+x2K( 1) AzK +o..04 xNK( 1) ANK
N
= _Z xnk( 1) Ank along column k.
n=1
Also, in terms of the cofactor C., (i.e., C. = (—1)]"'k><
ALY, Ik Ik
jk
N N
A = r x.C.,. = I x.C,
X n=1 n jn n=1 ]k ]k

where j and k are positive integers < N.

Cramer'’s Rule:

In any system of n linear equations of n unknowns,
for the kth variable v_,

k
A
v, = +—.
k A G
(Note: A _, is the determinant of a conductance matrix.)

G

5.2.2 SECOND AND THIRD-ORDER
DETERMINANT CALCULATIONS

1) Second-order determinant:

Xn X112
= XnX»p - XipX21

X X2

2) Third-order determinant:
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5.

Xnn Xi12 X3
= Xy Xgp X T XnXopXa tXpXpXz; + XizXaXyp
X X3 X8| - x)3xXox; - X1uXsX 3 - X12X 21X33
= Xy [XppX 53X 55X 5]

+ X (X23X3-XnX 33)+X13(Xpn X32-X20 X 31)

3 SINGLE-LOOP AND SINGLE-
NODE-PAIR CIRCUIT ANALYSIS

5.3.1 SINGLE-LOOP ANALYSIS
Analytical Procedure:

1Y)

2)

3)

4)

Use an arrow to represent the direction of the unknown
current and represent it by i in the circuit.

For each resistor in the circuit, select a voltage
reference.

Select a clockwise or counterclockwise direction of
movement while applying KVL to the single closed path.
Write down positive voltage when a positive terminal is
encountered or negative voltage when a negative terminal
is encountered.

For the resistive elements in the circuit, Ohm's law is
applied.
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5.3.2 NODE-PAIR ANALYSIS

Analytical Procedure:

1)

2)

3)

4)

O : O

A4

Assume a voltage across any element, assigning an
arbitrary reference polarity. (Note: Elements connected
in parallel have a common voltage across them.)

Assign and label the direction of current flow for each
resistor.

Apply KCL to either of the nodes in the circuit. Note:
Apply KCL to the node at which the positive voltage
reference has a preferred location.

Express the current in each resistor in terms of v and
the conductance of the resistor by Ohm's law.

5.4 SOURCE TRANSFORMATIONS

Characteristics of Practical Voltage and Current Sources:

A practical voltage source | A practical current source

practical source

Ry, (Q)
s s - B Ry
L RV+RL RL vL = Ri+RL ls = lLRL
v
s S R,
LR+ i= o=
v

L Ri+RL s
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Conditions for equivalence of practical voltage and current

source:
1) Each source must produce identical current and identical
voltage in any load that is placed across its terminals.
v R.i
i = S - l;
+
2) 'L R R R+R,
Hence,
R =R, =R and V_ =R
v i s s s's,

where RS = internal resistance of either practical source.

5.5 NODAL ANALYSIS

5.5.1 NODAL ANALYSIS - FORMAT APPROACH

Y]

2)

3)

Assign a reference node for the k nodes circuit.

For the circuit containing only voltage sources:

Replace each voltage source by a short circuit without
changing the assigned node voltages. Apply KCL at each
of the nodes in this modified circuit by using the
assigned node to reference voltages. Finally, correspond
each source voltage to the variables v,,... ’Vk— )

For the circuit containing only current sources:

Apply KCL at each non-reference node. For circuits
containing only independent current sources, the
conductance matrix can be obtained by using the
equation: total current leaving each node (through -all
conductances) = total source current entering that node.
(Note: Put the terms in order from (vl,...,vn_l.).

Finally, for the dependent current source, correspond
the source current and the. controlling quantity to the
variables vy,... V1t
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5.5.2 NODAL ANALYSIS - GENERAL APPROACH

1) Convert all voltage sources to current sources.
2) In each network, determine the number of nodes.

3) Choose a reference node and assign voltages to the
remaining node.

4) Apply KCL at each node, except at the reference node.

5) Solve the unkndwn equations for nodal voltages.

5.5.3 MESH ANALYSIS

General Approach:

1) Assign closed loops of current called mesh currents,
clockwise, to each loop of the circuit.

2) Apply KVL around each closed loop.

3) Solve resulting equations for the assumed loop currents.
Note: Mesh analysis is only applicable to planar network.
By definition, a planar network is a circuit diagram on a

plane surface such that no branch passes over or under
any other branch.

5.6 FREE AND GENERAL
NODAL ANALYSIS

A general procedure for writing a set of independent
and sufficient nodal equations using the concepts "tree" and
"cotree".

Ve = control voltage

R, R, +Vy -4V, -
+

Vs
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1) Draw a graph of the network given and indicate a tree.
By definition, a tree is any set of branches which does
not contain any loops. It makes connections between
nodes, but not necessarily directly.

2) Label and place all voltage sources in the tree.

3) Label and place all current sources in the cotree. By
definition, cotrees are those branches which do not
belong to the tree.

4) If possible, place and label all control-voltage and
control-current in the tree.

5) Complete the tree and assign voltage across each tree
branch. (See Fig. for sample illustration)

Concept of link: Any branch belonging to the cotree is a

link.

L = number of links = B(number of branches)

- (N(number of nodes)- 1)

B-N+1
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CHAPTERG

SINUSOIDAL ANALYSIS

6.1 SINUSOIDAL CURRENT, VOLTAGE
AND PHASE ANGLE

6.1.1 SINUSOIDAL FORCING FUNCTION -
GENERAL FORM

v(t) = Vmsin(w t+06)

where Vm maximum value

. _ 1 _ cycles _
f ="frequency = T = “sec hertz (Hz)
T = period (time duration of 1 cycle = sec)

21 _ radians
angular frequency = 27f = = = =2

€
1]

6.1.2 LEAD AND LAG CONCEPT OF PHASOR
ANGLE @

Let A = Vmsinwt and B = V,msin(wt+6) , then

1) B leads A by 6 rad.
2) A lags B by 6 rad.
3) ‘A leads B by -6 rad.
4) A leads Vmsin(wt- 6) by 6 rad.
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-

-Jt,m “f\:/zﬂ
] B

wt

6.1.3 SINUSOIDAL CURRENTS AND VOLTAGES

Voltage across resistance (R),

‘nductance (L) or

capacitance (C) if current is indicated as follows:

Element voltage i= Imsm wt
R VR = R Imsm wt
L VL = wL Imcos wt
C v = 1
C w_% (-coswt)

Current in R, L or C if

i=1 coswt
m

\%

R=RImcosw t

VL=mLIm(—s1nwt)

I

=_m
wC

v

C sin yt

voltage is indicated as follows:

Element current v = Vmsin wt v = Vmcos wt
A" Vm
R ip = =X sin wt lR = Tcoswt
Vm Vm
L i = E(-cos wt) 1L = Esm wt
C 1C = wC Vm cos wt 1C = wCVm(-smwt)
Note:
VR(t)
1) 1R(t) = R , VR(t) = 1R(t)R
) t dip (t)
2) i (1) = f v (T)AT, V() =L —g
Ze ¢
. ch(t) 1
3) 1C(t) =C a5t VC(t) = ¢ IlC(T)dT
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6.1.4 CHARACTERISTICS OF PHASE ANGLE

IN PURE ELEMENT

Current and volt-
Impedance .
Element |age phase angle . Diagram
. R magnitude
relationship.
v
Current and
. R
R voltage in phase. wt
Current lags the
L voltage by 90° or wL
w/2 rad.
Current leads the
o] voltage by 90° or 1/wC
/2 rad.
Current lags the
Series RL|voltage by VR2+ (wlL) 2
tan™ ! (WwL/R) .

|
iSeries RC

!
L

Current leads the
voltage by
tan™?! (1/wCR) .

VR2+ (1/wC) 2

6.2 CONCEPT OF PHASOR

6.2.1 PHASOR NOTATION

In general, the phasor form of a sinusoidal voltage or

current is
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V=vm@ and I1=1_ A.

Thus, for the voltage source v(t) = Vmcoswt, the
corresponding phasor form is Vm = éo. For the current
response i(t) = Imcos(mt+6), the corresponding phasor form
. - 0
is Im [@ .

6.2.2 TIME DOMAIN TO FREQUENCY DOMAIN
TRANSFORMATION, AND VICE VERSA

Time domain > frequency domain:
ie., v(t) =V cos(ut+ ) » V=V_ /o

1) Assume a sinusoidal function i(t) in the time domain is
given. Express i(t) as a cosine wave with a phase angle.

2) Using Euler's identity-- el® - cosb + jsin6 --express the
cosine wave as the real part of a complex quantity.

3) Drop the Re and the term e]wt to obtain  the final

phasor form (the frequency domain form).

Frequency domain > time domain:

1) Given a phasor current or voltage in polar form in the
frequency domain, express the complex expression in
exponential form.

2) Multiply the factor e]wt to the obtained exponential form.

3) Apply the Euler's identity and take the real part of the
complex expression to obtain the time-domain
representation.
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6.2.3 TIME-DOMAIN AND FREQUENCY-DOMAIN
RELATIONSHIPS OF VOLTAGE AND
CURRENT FOR ELEMENT R, L AND C

Element Voltage & Current Relationship
voltage|Time domain | Frequency domain
current
— A :
FW——eR v = Ri V = RI
R
<oV
—r o - . _ g
F L oL (v=1di/dt |V = (JwL)I
C Vv
_»-‘- -
e c |v=21iat |v-= Tl_. I
C C jwc
Vmej(mt+9) v/8
ej(wt+9—¢) /0-

m

time domain plot frequency domain plot

(Note: Vm and I, are 1/V/2 times V and I.)

6.3 COMPLEX NUMBERS

6.3.1 IMAGINARY NUMBERS
j= /-1

Commonly used forms: j> =-1, j°=j*j = -i, it=(3* =1,

j =14, ete.

6.3.2 COMPLEX NUMBERS

j-axis
(imaginary axis)

real axis
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Rectangular form: Polar form: Exponential form:

Z=x+jy Z =r(cos 0+jsin0) Z=re19
+ 4 " | where x =rcos® | (By Euler's identity,
real imaginary y =rsin i.e., e]e =(cosf+jsin 6))

Z* = x-jy (complex r = /x2+y2 __ -je
conjugate of Z) and 6 =tan"'y/x and Z* = re
-Note:
For x=0, pure

imaginary,

a point on

j-axis.

y=0, real Z=rf=

number, a -

point on r(cos 6+4jsing)

real axis . Z*=r£e=

r(cos 6-jsin@ )

6.3.3 COMPLEX NUMBERS - MULTIPLICATION
“AND DIVISION

|Multiplication Z, Z, | Division Z, /Z,

. . e .
Exponential (Z=re] ) rlrze](el+ez) r, ej(el-ez)
r,
Polar (z=r LG) - rr, [61+02 % o, -0,
2

|Rectangular (Z=x+jy) vxlxzﬂ'xﬂ’z (X%, 4 1,) H(Y 1 X~V X )

.- . , 2 2
Hy X, Y Y, Y,
. [Note: Z,_=r1e]'el rZ‘2=r2e] 8z
6.3.4 POWER OF COMPLEX NUMBER
Given a complex number Z = x+jy, where Z = reje

(rcos6=x and rsinf-y), then

zn = (re] e)n =l on - rn(cos no + jsin.ng),
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where

6 = tan'l(%) and r = Vx2+y2,

6.3.5 ROOTS OF A COMPLEX NUMBER

Given a complex number Z = x+jy,

n n .
then vz = /;[e]0+2k1r]1/n
n ., B 42km
= TR )
n
—_ 0+2k .. 0 +2km
= Vr [cos ( nzk)+]s1n( nk)],
where k =0,3,2,...,n-1.
Note:

For any complex number,

6=20+2km, k=0,*1,....

6.3.6 COMMONLY USED FUNCTIONS OF A

COMPLEX NUMBER OF THE
FORM: Z = x + jy

a) sinz = sin(x+jy) = sinxcosjy + cosx sinjy

= sinxcoshy + jcosxsinhy
b) log z = log(x+jy) = log r + j6 log e

(Note: x+y = rel e)

e) e = X = XV = e¥(cosy+isiny)

6.3.7 EULER’S THEOREM

The Taylor expansion of e]e is given by
g1
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eje=1+i9+j226!2 +...+jn_n?2 +.
- [1-‘;+2—:-...] +j[e_§!_3+?5_§’_ ]
cos © v
Other formss ) . .
1) cosg = e—-2———]e+e]e , sing =e_362—]e]e
2 cosio = S0 e, sinje:ej(jze])'e-j(je)
= jsinhg

6.4 IMPEDANCE AND ADMITTANCE

6.4.1 IMPEDANCE

Definition:

phasor voltage

impedance (Z) = phasor current

[ohms].

Note: Impedance is a complex quantity.

6.4.2 TWO GENERAL FORMS OF AN IMPEDANCE

1) Polar form: Z = |Z | @
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2) Rectangular form: Z =R % jx

R = Resistive component

X = Reactive component

Impedance for elements R, L and C in the frequency domain
are expressed as follows:

D Zg=1=R

2) 2, =¥ = juL

»ig=7 = j01>C

Note: +jx - inductive reactance, XL = wL
=1/wC

-jx - capacitive reactance, XC

6.4.3  ADMITTANCE

Definition:

_ Phasor current
~ Phasor voltage

Admittance (Y) =% [mhos]

General form of Admittance:

Y=GtiB

Note: positive sign (i.e., +jB) + capacitive susceptance

negative sign (i.e., -jB) +~inductive susceptance
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6.4.4 REPRESENTATION OF IMPEDANCE

AND ADMITTANCE IN TERMS OF
PHASOR VOLTAGE AND CURRENT

Phaser diagram Impedance Admittance
v z= R|] Y= G
v=v/6 v/ /8
VS T
i=1/6 /8 — \/Z4:
v - L
R
¢ Y= 2G -3B
eI = JXg, L
= v/0 1/6-¢
v=v/8 z=/; =2/ Y= 5 =Y/-¢
i=1/6-¢ 1/6-6 v/e
=R+jXp, =G-jBL
3
Xp[=- A
t
i
T r
Phaser diagram Impedance Admittance
I O P
v zZ= iR Y= <G ch
‘ b o T |,
v/8 1/6+¢
v=v/8 = =2/=¢ | y=——=2/-¢
i=1/0+¢ 1/8+¢ v/
=G+3B¢c
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6.4.5 CONVERSION OF Z TO Y AND VICE VERSA
IN POLAR FORM

1 i G ._-B
1) Z = v = R *tjx = G24B2 *j G2%+B?

1 _ R . X
DY =g =GB = gy T IRTL?

6.5 AC ANALYSIS

Procedures similar to DC analysis and theorems are
used for AC analysis except that they are in terms of
phasor voltages and current (V and I) and impedance (Z).

Note: In the case of source conversions, the general format
is as follows:

+ ]
V=12 o
~_. I=%C

6.6 AVERAGE POWER AND
rms VALUES

6.6.1 INSTANTANEOUS POWER

p =vi

53



i(t)
—
—

v(t) Q PASSIVE
ELEMENT

L
Note: p = +'ve, energy transfer from source to network.

p = -'ve, energy transfer from network to source.
In a resistive circuit, p =i?R =v?2 /R.

t
. . . . _ .. di _1
In a inductive circuit, p = Li =% v vdt.
dt L
o

t
i [ idt.

In a capacitive circuit, p = Cv c:l_v =

-+
Q-

6.6.2 AVERAGE POWER

Average power (P) = % lemcos 5]

=V 1 cos 9, where V. =V [/ /2
rms rms rms m

———————

apparent power Los L,/ 2

(Note: Rms=effective values)

- average power (P) _
Power factor (pf) apparent power (V i y = cos 0
rms rms

Note: The unit of apparent power is voltamperes (VA).

Since cos 6 has maximum value of 1, the magnitude

of the apparent power must be greater than the
magnitude of the real power.
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6.6.3 SPECIAL CASES OF pf

1) In a sinusoidal case, pf = cos0, where 6 = angle by
which the voltage leads the current = pf angle.

2) For a purely resistive load, voltage and current are in
phase, i.e., 6 = 0 and pf = 1. Hence, apparent power =
average power.

3) For a purely reactive load, the phase difference between
the voltage and current is either +90° or -90°. Hence,
pf = 0.

4) In general networks, 0 < pf < 1.

Summary:
Reactive power = V I sin6 [voltamperes -« reactive
rms rms
(VAR)] = Q
= I 1 =
Apparent power Vrms rms [voltampere(VA)] = S
Average power =V I cosf =P
rms rms

6.6.4 POWER TRIANGLE FOR INDUCTIVE
AND CAPACITIVE LOAD

Inductive load Capacitive load
Icose
Isin®
I51n6
IcosG

P
5] iS. s 3] is
s lagging leading
P
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6.6.5 COMPLEX POWER

= *
Complex power (P) Vrmslrms

=V I ej(ev'ei)
rms rms

=V I cos B -jVv I sin 6
rms rms rms rms

=P - iQ

real average power reactive power

Complex Representation of P, Q, S and pf:

P = ReV__ I*
rms rms
Q=1V I*

m rms rms

*

I
rms rms

pf =P/S =cos 8

6.6.6 RMS OR EFFECTIVE VALUE
Effective value can be obtained as follows:

1) Square the time function.

2) Take the average value of the squared function over a
period.

3) Take the square root of the average of the squared
function.

(Note: Effective value = square root of the mean square =
rms value, i.e.,
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T

1 .
eff ~ “rms T [ [i()]* at
0

Special cases:
1) Effective value of asinwt and acoswt = a/v2

2) 1 for sinusoidal current i(t) equals Imcos(wt-e), with

eff
T=2n/w=1/v/2 = 0.7071 .
m m
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CHAPTER7

POLYPHASE SYSTEMS

7.1 SINGLE-PHASE, 2-PHASE
AND 3-PHASE SYSTEMS

7.1.1 SINGLE-PHASE, THREE-WIRE SYSTEM

The representation of a general single-phase,
three-wire system is:

.
[ 1]

Since v =v =V, Vv, =2v =2v
an nb ’ "ab an nb.

7.1.2 TWO-PHASE SYSTEM

direction of rotor

rotation™y
A

p Voltage phasor
“/ p diagram
B +

induced A'A

A emf
rotor: . coil ;' Va'p
N——»
s neutral/B'- + B
(a) (b)
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BN ~ Yeoil
- 0
VAN Vcoil 5_0_
= = 0+ 00 = A" 359
VAB VAN * VNB Vcoil AO‘ Vcoil V2 coil i—

7.1.3 THREE-PHASE SYSTEM

direction of

rotation:z

A
B! '
C B
Al

N———a35

Sequence ABC

L
Va'a
a-
¢ B
c g
1vaia vgip 0-5Y, (C'C)
0.866 BB .
v, (cre) {
— t
0.866{ \
Vm(B'B) _.7
120%e | VC'C
74-240‘- -

Sequence CBA

A AC B A C
A'
C'
T N | VA
c
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Characteristics

At any instant of time, the summation of all three

phase voltages is zero, i.e.,

EVpa *Vgp * Vo) = O

Note: In a three-phase system, the three coils on the rotor
are placed 120° apart. (Assume each coil has an

equal number of turns.)

7.1.4 THREE-PHASE SYSTEM VOLTAGES

Sequence (Note: V;=line voltage)
ABC
e Van= (V,/v3) £90°

Vg~ (Vp/V3) /=30°
Von= (Vy/v3) /=150°
Vpp=Vy/120°

B A| vpe=vp/0°
Vea=vp/240°
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CBA VAN=(VL/V§3Z:2—°
V= (V/v3) £.30°
VeN= (vp/v3) /150°
Vap=V; /240°

C A VBC=VLAQ?
Vea=vp/120°

7.2 THE WYE (Y) AND DELTA (A)
CONNECTIONS

7.2.1 WYE (Y) AND DELTA (A) ALTERNATORS

A-Alternator

Y-Alternator

- -1
Icoil - Iline Icoil /3 Iline
Vline =3 Vcoil Vline = Vcoil

I is more commonly referred to as I

coil phase’

7.2.2 THREE-PHASE Y-Y CONNECTION

Ideal voltage sources connected in Y (three-phase):
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7.2.3 CHARACTERISTICS OF BALANCED
THREE-PHASE SOURCES

1. |v |VBN] = IVCNI and VAN + VBN + VCN =0

ANl
2. f Vv = VP @ is the reference where VP = rms is

AN
the magnitude of any of the phase voltages, then

=V, [=240 ® (positive phase

v =V £120° and V
BN P CN or sequence ABC),
or
VBN =V, 120° and V = V 40° (negative phase
or sequence CBA).

Phasor diagrams of:

a positive sequence a negative sequence

V_ =V_/-240°
CN 120°
(V_=phase N
voltage) AN /0° /0°
-120° 240°

VBN=V

3. Phasor diagram of a line and phasor voltage relationship

Ven




line ¢ Vphase

AB V3 VP /30 0
AV, [0’

= /-210°
Voa =73 Vp

v

VBC

7.2.4 DELTA CONNECTIONS

A balanced A-connected load with Y-connected source:

I
CoA
2 g\Vc N g Vaom
\S\ KCsCy, B4
i

Given that Vphase = |V, N|

assume v. = |V
line

where V. = /3v, and V =3V 30°,

L

Then the phase currents are

VAsBs VBscs Y
I = —— , 1 = ——— and I =
ASLB!L Zp BQCQ Zp CJLAl

and the line currents are

1 I , ete.

- I =
ABy Coy Al
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Note: The three-phase currents are equal in magnitude,

ie., I_ = |I | = |t | =1 |,
P AsBs BsCs CsAs
L= I | =g gl =g ¢ |
L AA, BB, c.Cy
and I = V3 IP.

7.3 POWER IN Y- AND A-
CONNECTED LOADS

7.3.1 Y-CONNECTED LOAD

For a Y-connected load, the phase power with pf angle

8= PP = Vphasellinecose (Note: VP IP = VPIL = VI/._I_I_..
3

The tOtal poweI - P - 3P s O P - V3 V I Ccos e w here V =
v § V .

A-connected load

/7

64



For a A-connected load, the phase power = P =

p
V.I cosO6(Note: V.I =V I =V_—).
L'peos¥ plp” Vi'p T VL)

The total power = Pt = 3Pp or Pt = /?VLIL cosf .

Notice that the total power for any balanced three-phase
load is equal to v3 VLILcose, where ST (apparent power) =

./.?TVLIL and BT (reactive power) = /3_VLILsm‘e.
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CHAPTER 8

FREQUENCY DOMAIN
ANALYSIS

8.1 COMPLEX FREQUENCIES

8.1.1 COMPLEX FREQUENCY

In general, the complex frequency s has the form s =
§ + jw which describes an exponentially varying sinusoid.
The complex frequency s consists of two parts:
1) The real part, §, the neper frequency in nepers/sec.
2) The imaginary part, jw, where w is the radian

frequency in radians/sec.

The real part is related to the exponential variation; the
imaginary part is related to the sinusoidal variation.

In general, a function f(t) can be expressed in terms
of the complex frequency s as

f(t) = k &5t

where k is a complex constant.
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The characteristics of the function f(t) relate to the
complex frequency s as follows:

s f(t)

+ increases
- decreases as t increases
0 constant sinusoidal amplitude

Note: Increasing the magnitude of the real part of s will
increase the rate of the exponential increase or decrease.
Increasing the magnitude of the imaginary part of s will
increase the time function changing rate.

8.2 COMPLEX FREQUENCY
IMPEDANCES
AND ADMITTANCES

Table of complex frequency impedances and admittances for
elements R, L and C:

element impedance Z(s) Admittance Y(s)
1
R R R
L sL 1/sL
C 1/sC sC
A
Note: Z(s) = I Y(s)
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8.3 THE S-PLANE
(COMPLEX-FREQUENCY PLANE)

8.3.1 THE S-PLANE

w (imaginary-axis)

J
// —
Left-hand I~ Right-hand

===
=

1) A point at the origin.—scorresponds to a DC
quantity

»§ (real-axis)

2) Points on § -axis —a) § > 0 ~exponential func-
tions decaying

b) § < 0 ~exponential func-
tions increasing

3) Points on jw-axis—— purely sinusoidal functions.

4) Points in v/ (left- ——describe frequencies of ex-
hand-region) ponentially-decreasing sinusoids.

5) Points in% (right- —describe frequencies of ex-
hand-region) ponentially-increasing sinusoids.
(i.e., frequencies of positive
real parts,time-domain quantities).

8.4 POLES AND ZEROS

Consider a rational function of the form

b s™+b s T4 4+bys + b
H(s) = m-1

n n-i
a s +a S +...+ +
n n-1 a;s ag
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It can be expressed as

(s—zl)...(s—zm)
H(S) = k (s‘pl)---(S'Pn)

where the zeros of H(s) (i.e., zl,zz,...,zm) can be
obtained by setting the numerator of H(s) equal to zero.

The poles of H(s) (i.e., pi,p 2,...,pn) can be
obtained by setting the denominator of H(s) equal to zero.

Poles and zeros are indicated in the S-plane
(complex-frequency plane) as follows:

jw (Im)

zero X

§ (Re)

Procedures for graphical determination of magnitude and
angular variation of frequency-domain function

Step 1: Find all poles and zeros of the frequency-domain
function. Indicate them in the S-plane and, for the
function to be determined, assign a test point on
the S-plane corresponding to the frequency.

Step2: Draw a corresponding arrow from each pole and
zero to the test point.

Step 3: Calculate the length and angle of each pole arrow
and zero arrow.

Step 4: Determine the magnitude of the frequency-domain
function for the assumed frequency of the test
point by the following ratio:

product of the zero-arrow lengths
product of the pole-arrow lengths

Step 5: Finally, use the formula

[Sum of =zero-arrow anglesl-[sum of pole-arrow
angles]
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to  obtain the angular variation of the

frequency-domain function evaluated at the test
point.

8.5 RESONANCE
(SERIES AND PARALLEL)

8.5.1 RESONANCE

In a network, when the voltage and the current at the
input terminals are in phase, the network is in resonance.

Note: In resonance, power factor (pf) is unity.

8.5.2 PARALLEL RESONANCE

Y—» GS -3
WL

3|
7!
.

Characteristics

1) The complex admittance Y is
Y=G+j(wC - 1/wL).

2) Resonance condition for the circuit:

1 _
wC—w—L‘—O
1
RS &
1
w:——_:&)o
vLC
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where w, = resonant frequency
1 cycles

2m/ic °€¢

or fo

WwC = capacitive

v _-Susceptance
Z

Gor=>r=—---
0 F——*——

Wy -

21

ﬁkaz-= inductive small R

susceptance

(a) Parallel circuit Y as (b) 2 and 0 as a

a function of w. function of w.

Note: At w < w,y, inductive susceptance > capacitive
susceptance and Y is negative.

w>uwy, ¥ Z is negative.

w >0, ¥Zis +90°

' 4) Pole-zero representation of Y

(s+o- ju)(s+a -jwa)
K S

Y(s) =

_ . . o1
where o = exponential damping ratio RC’

natural resonant frequency = /y 42-02

A Im
AT T Jwg S-plane
’ UJO
+ » Re
-0
0 :‘jwd
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8.5.3 SERIES RESONANCE

Z —> JwL

&

Characteristics

1) The complex impedance Z is
Z = R +j(wL - —1—-)
- L wC”’’

2) Resonance condition for the circuit:

1 _
wkL - wC = 0
or 1
W= — =Wy
/LT
Hence, the resonant frequency (f,) = 1 cgeccles
2m YLC

wL = inductive
z reactance
rd

/—= capacitive -90° kT~
reactance large R
maximum current
occurs

Z, ¥, and 0 as a function of w.
When w < wg, capacitive reactance > inductive reactance
and ¥ Z is negative.

When w > w,, inductive reactance > capacitive reactance
and ¥ Z is positive approaching +90°.

When w -0, ¥ Zis-900
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8.6 QUALITY FACTOR - Q

8.6.1 QUALITY FACTOR

By definition, the quality power Qis expressed as

maximum energy stored
total energy lost or dis-
sipated per period

Q = 2m

8.6.2 QUALITY FACTQR Q
FOR SOME GENERAL CIRCUITS

CIRCUIT QUALITY FACTOR, QO
1.
I
—_ 2
‘_% 0 orx L max/w?c _ 1
R 12 2)XRXT WCR
9 RC series (T*max/2)
;t—r—l—
— 5jucC

2
2. I 0= 2mX BLI nax _2mfL _ wL
= 5 = =22
— (1 max/Z)XRXT R R
R .
RL series pol_2T
jwL f w
3. At resonance:

R Q =Wl __1
| 0 R (»OCR
‘ JWwL }RLC series Wy ) fo f_ﬂ.

w,-w,  f£,-f, BW(Bandwidth)

Note: ;’cvzmax= ;’lemax (at maximum)

A7
— WwC
R
R RLC parallel| At resonance: Q = — = w,CR
_~ D 0 moL 0
1
jwc
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Note: Both circuits in (3) and (4) store a constant amount
of energy at resonance.

8.7 SCALING

The method of scaling is used to ease the numerical
calculations during networks analysis. There are basically
two types of scaling: magnitude scaling and frequency
scaling.

Magnitude scaling Frequency scaling
A factor of Km is increased A factor of K, is increased

for the frequgncy at any

for the impedance (z) of a impedance, i.e.,

two-terminal network with
the frequency remaining g : g;K and
constant, i.e., f
R ~» K R, L - LJ/K,.

m f
Cc - C/Km and

L > K L.
m

74



CHAPTERS

STATE - VARIABLE ANALYSIS

9.1 STATE - VARIABLE METHOD

Given a circuit with energy-storing elements (i.e., a
capacitor and induector), the circuit can be analyzed by
using the state-variable method. A hybrid set of variables
is selected (including capacitor voltages and inductor
currents) to describe the energy state of the system.

By wusing a set of state variables, a set of n
first-order, simultaneous differential equations can be
obtained from the given nth-order differential equations
(i.e., state equations).

9.1.1 CONDITIONS FOR THE STATE-VARIABLE
METHOD

1) The state equation must be expressed in normal form,
i.e., the derivative of each state wvariable must be
expressed in terms of a linear combination of all the
state variables and forcing functions.

2) The equations describing the derivatives must be of the

same order as the state variables appearing in each
equation.
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9.2 STATE EQUATIONS FOR
n-th ORDER CIRCUITS

9.2.1 STATE EQUATIONS FOR THE FIRST
AND SECOND ORDER CIRCUITS

1) First—order circuit:

State equation

(D) = ge [V(D-x(D]

1) x(t) represents the state variable vc(t).
2) v(t) = Ri(t) + vc(t),

t dv
i(t) =ie(t) =C d—tc

o)

+
;:Vc(t)

V(t) c

2) Second-order circuit

N OREE TORE R0

(1)

K1) = g Xy

Xy(t) =i (1)

X,(t) = vC(t)

+
V(t) _vc(t)

]
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9.2.2 GENERAL STEPS TO OBTAIN THE STATE
EQUATIONS FOR A LINEAR
TIME~-INVARIANT NETWORK

General steps to obtain the state equations for a linear
time-invariant network

Method 1

Step 1: Assign state variables for the voltage across each
capacitor and for the current through each
inductor. '

Step 2: Apply KVL and KCL to obtain a set of linear
independent equations for each capacitor and
inductor.

Step 3: Rearrange the equations obtained in step 2 so that
all other variables in the network are in terms of
the chosen state variables.

Step 4: Consider all the equations obtained in step 2 and
3. Simplify them so that the equations are
expressed only in terms of the state variables and
their corresponding derivatives. Therefore, all
network variables not chosen as state variables are
eliminated.

Step 5: Rearrange the equations obtained in step 4 in the
compact form

%(t) = Ax(t) + bu(t) (the normal-form equation),

dx(t)

where x(t) = derivative of x(t) = ar

x(t) = n-column vector of all the state
variables (x.,x,,. X ) chosen in

step 1 (i.e., x(t) = [x () +x,(t) +
crx (01T

A =constantn X n square matrlx =
system matrix (i.e., (a )),
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b = an n-column vector, and bu(t) =
the forcing function vector due to the
independent sources (i.e., b 2 [b,,b,,

,bn]).
Therefore,
A1) 7 Ay, Alz...A1n x,(t)
kz(t) : -.........:o'o....’.. : XZ(t)
. = DN . + u(t)
xn(t) Anl ......... Ann Xn(t)

9.3 NORMAL - FORM EQUATIONS

9.3.1 GENERAL PROCEDURES TO OBTAIN
A SET OF NORMAL-FORM EQUATIONS

Method 2

Step 1: Obtain a normal tree for the given network using
the nodal analysis as outlined in Chapter 5.

Step 2: Assign state variables for the voltage across each
capacitor and the current through each inductor
correspondingly, i.e.,

C + VC _
— e Do——— o
free branch
L iL
TV D& -~ -
—_—
link

or, for the resistive tree branches or links,
indicated by wusing a new voltage or current
variable (if necessary).

Step 3: a) For each capacitor, apply KCL (as outlined in
Chapter 2) to write a set of equations.
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b) For each inductor, repeat part (a) but use
KVL instead.

c¢) If any new voltage and current variables were
assigned to the resistors, write the equation
for R by using KCL and KVL. Then express

vR and iR in terms of the state variables and

source quantities. Otherwise, skip this step.

Step 4: Put all the equations obtained in step 3 in order
and rearrange to obtain the normal-form equations.

9.4 STATE TRANSITION MATRIX-eAt

9.4.1 STATE TRANSITION - eAt

Let us represent the state equations in the normal
form

x(t) = Ax(t) + bu(t) (At t=t,, x(ty) = X,.) (1)

The solution of the matrix state equation (in (1)) is given
by

t

- ( -
At to)XO + JeA(t T)

x(t) = e bu(T)dr ,

to

where eAt 8 the state transition matrix, which describes the
change of state of the system from zero to the

state at time t where eA(t—t 0 is eAIc evaluated
att=t-to. A(t't )
(Note: x(t) and e “bu(1) are n-column

vectors.)

To determine the state transition matrix eAt, the
Cayley-Hamilton theorem is applied.
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9.4.2 CAYLEY-HAMILTON THEOREM

1) By definition,

At
e

>

HAOT+ BADA + B (DA +vu (DAY (2)

where A is an n X n square matrix and uo(t)...un(t)
are scalar functions of time.

2) For equation (2) to hold, the following conditions must
be satisfied:
a) I = unity matrix.

b) The characteristic equation of the matrix A equals
Det[A - sI] =0,

where Si, i = 1,2,...,n of A are the roots of the
characteristic nth-order polynomial equation and are
called the eigenvalues of A.

9.4.3 GENERAL PROCEDURES TO OBTAIN THE
STATE TRANSITION MATRIX eAt,
GIVEN MATRIX A

Step 1: Obtain a matrix in the form A - sl.

Step 2: Equate: Det[A - sI] = 0 and solve for the roots
(i.e., Si, i = 1,2,...,n) of the characteristic
equation.

Step 3: Express each root in n equations of the form etsi

n-1

= ugt+ U8 +...+ un_ 1Si , and solve the scalar

time functions: W, -.., U ;.

Step 4: Obtain the state transition matrix by substituting
the time functions obtained in step 3 into Equation

(2).
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CHAPTER10

FOURIER ANALYSIS

10.1 TRIGONOMETRIC
FOURIER SERIES

10.1.1 DIRICHLET CONDITIONS FOR THE
EXISTENCE OF A FOURIER SERIES

If f(t) is a bounded periodic function of period T
(i.e., f(t+T) = f(t)) and if f(t) satisfies these Dirichlet
conditions:

1) f(t), if discontinuous, has a finite number of
discontinuities in any period T;

2) f(t) has a finite average value over period T;
3) The number of maxima and minima of f(t) in any period
T is finite

then f(t) may be represented by a trigonometric Fourier
series as described below:

10.1.2 TRIGONOMETRIC FORM
OF A FOURIER SERIES

1) The function f(t) is expressed over any interval
(tg,to+2m/w,) as

f(t) =ay + a,cos wot + a,cos2wgt +...+ bsinwgt + bysin2wt+...
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e
= ag+ I (ancosnwot + bnsin nuwet) (tg < t< to+ 27 /lwg)

n=1
where , = fundamental frequency = 27/T
(to+T)
and a =%. f(t)dt (where't, is assumed
t to be zero generally)
0
(to+T)
a = % f(t)cosny t dt
to
(t4+T)
b = & J £(t)sinnw o t dt

10.1.3 SPECIAL INTEGRATION PROPERTIES
FOR SINE AND COSINE

T
1) J sinng,tdt = 12
0 2
T
J cos’ ny,t dt = 12
0
T T
2) Jsinnwodt = Jcosnwotdt =0
0 0
T
3) J sinkwgtecosny t dt = sinkwgtsinn gyt dt
0

coskwotcosnyet = 0

T
J

T
]
for k # n.
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10.2 EXPONENTIAL FOURIER SERIES

A given function g(t) can be expressed as a linear
combination of exponential functions over the period t,,
to+t2m/wy, as follows:

“jaw ot —Juwet

e_]nw ot+

g(t) =...+G_ ...+ G_ge +G_ e

+Go+ Gle]mot + G, Q2w dt o0+ Gnejn“’ot ...

00
jnw 4t
n—Z_mere] O (to<t< to+2mwg),

it is assumed that to=0.

(Note: T = 21/w,.)

T
Therefore, Gn =7 I g(t)e-]n‘”"t at
0
T
G, = % J (t)at
and ° T 0 &

Relationships between trigonometric and exponential Fourier
series

Trigonometric series Exponential series
2y = G,
a, = Gn + G_n
b, = (G -G_»
1 R
3 (an-]bn) = Gn
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(F

~

10.3 COMPLEX FORM
OF A FOURIER SERIES

The complex form of a Fourier series is given as

gty = 1 c_ & ot

n=-o

T
2

where C , is a complex constant = % 1J g(t)e_]nw ot dt,
7

forn=0, 1, £2,%3,....

Note: |C_| = |C _|,sinceC = C_*.
n -n -n n

10.3.1 SPECIAL CASE

TV(t)
v
es e [ T ™ e oo
l »t
—T—
Given a train of rectangular pulses with period T,
i.e., :
v -1/2 <t < 1/2
v(t) =
0 T/2 <t <T- 1/2,
T
then 7
=1 ~inwet
Cn = 7 I Ae dt
_2
_ 2A_ (ejnwo T/2_e-jnon/2)
T nuweT 2
_ At [sin(Gnw,T)|_ AT
T l: T (Gnw,n T Sa(inweD,
/
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sinx

where = sampling function = Sa(x).

Thus, v(t) = A—% I Sa(inw,me@ot

n=-o

10.4 WAVEFORM SYMMETRY

Waveform symmetry Properties
1) Even symmetry a) g(t) = g(-t)
(i.e., cosine function) b) b, =0
T/2
4
c)a =7 J g(t)cosnyytdt
0
2) 0dd symmetry a) g(t) =-g(-t)

i.e., sine function
( ’ ) b) ag = a = 0

T/2

¢) b, =% I g(t)sinnytdt
0

3) Half wave symmetry a) g(t) = -g(t+T/2) where
T = period A
b) For n = odd, an =
T/2

% I g(t)cosnw ( tdt
0
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Waveform symmetry Properties

T/2
3) Half wave symmetry b = % J g(t)sinnw tdt
n
0

n=even, a_ =b_ =0
> “n n

a) For n =odd, a_ =
4) Half wave and even n

symmetry T/4
(
% J g(t)cosnw o tdt
0
b =0, n=even,a =b =0
n n n
5) Half wave and odd a) For n = odd, a = 0 and
symmetry
T/4
bn = % g(t)sinnw gtdt
0
n = even, bn =an =0

10.5 THE FOURIER TRANSFORM

By definition, the Fourier transform of g(tv) is

F{g(t)} = G(w) = Ig(t)e'j w“t gt

The inverse Fourier transform of F(w) is

FHG(w)} = g(t) = 5= IG(w)e"‘*’t dw,




o oo

(
as long as J |£(t) |dt converges (i.e., [If(t)[ dt < « ).

-00 - 00
Thus, g(t) and G(w) are called the Fourier transform pair.

Note: The Fourier transform of g(t) can also be expressed
in terms of sine and cosine by using the Euler's

identity:
-jwt _ . .
e =cos wt - jsinwt.
- R(w) - I(w)
Hence, p e e e, r~\———_‘
G(w) = J g(t)coswt dt - j J g(t)sinwt dt
= |a(w)|  fBw)
where |G(w) | = [R*(w)+I%(w )1
and 8 (w) = tan'l[}{{(ﬁ%]

10.5.1 SOME USEFUL FOURIER TRANSFORM PAIRS

g(t) <= G(w) = F {g(t)}

1.
1
-1 G(w) |=
JRELI ;.|. = Vo
b
I l 90°
’ —, r+jw w
t
0
-90°
8 (w)=tan™! [%]
2. A{u(t+1/2)- G |
u(t-1/2)} | ATsin(wt/2) |
‘ Wt/2)
A =ATSa (WT/2) /‘\/T | T\/A\ w
/2 s t =2/t 27w/t
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[t3

. ij)
e =
0 t ——u
4t 218 (w)
)
1 276 (w)
I R — .
5. u(t) |
1
0 L
6. sgn(t) low |
1 2 / ‘\-
—t jw
Y _ "
7. cosw, t {8 (w_w°)+ G(w)
6(L0+wo)} T T
—mo 0
" sinwgt Jrl8 (whw ) - 3G (@)
G(w-wo)} -0,
w
( 4 W : 0

If G(w) =

10.6 PARSEVAL’S IDENTITY

F {g(t)} , then

1 1
2 —
J lg(t)| 2at = o= I

| G(w)|?dw.
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In general, if G(w) = F{ g(t)} and H(w) = F{h(t)}, then

©o

(
|gn*wat = % IG(w)H*(w)dw,

- 00 -
where * denotes the complex conjugate.

Note: G(-w) = G*(w)

10.7 CONVOLUTION THEOREM
FOR THE FOURIER TRANSFORMS

Let F(w) = F{f(t)} and G(w) = F{g(t)}. Then the
convolution of f and g (i.e., f * g) is defined as

( T :
f*xg = Jf(T)g‘(t- Ddt = 21—ﬂ JF(m)G(w)e]wtdw

- 00

Hence,

F{f*g} = F(w)G(w) F{f} F{g}.
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CHAPTER 11

LAPLACE TRANSFORMATION

11.1 DEFINITION OF
LAPLACE TRANSFORM

By definition,

o

L{g(t)} = G(s) = Ie'St g(t)dt
0

where g(t) is a function of the real variable t, and s is a
complex variable defined as s = § + jw. The function g(t)
is called the original function and the function G(s) is called
the image function.

The transformation of a time domain function into a
complex frequency domain function is the operation L{g(t)}.

In order for the Laplace transform to be valid, the
following conditions must be satisfied:

1) If the integral in eq.(l) converges for a real s = s,,

i.e.,
B
lim [ e St g(t)at  exists,
A0
Bro A
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then it converges for all s with Re(s) > s,, and the
image function is a single valued analytic function of s
in the half-plane Re(s) > s,.

2) g(t) is a piecewise continuous function.

1) It should be noted that in specifying the Laplace
transform of a signal, both the algebraic expression and
the range of values of s for which this expression is
valid is required.

2) The range of values s for which the integral defining
the Laplace transform converges is referred to as the
region of convergence.

11.2 DEFINITION OF THE INVERSE
LAPLACE TRANSFORM

If L{g(t)} = G(s), then g(t) = L-'{G(s)}is the
inverse Laplace transform of G(s). L~! is called the inverse
Laplace transform operator.

11.3 COMPLEX INVERSION FORMULA

The inverse Laplace transform of G(s) can be found
directly by methods of complex variable theory. The result
is

<{5+j°° §HT
g(t) = — J eStasyds = == lim J Sta(s)yds
21mj 2mj To
§-j §-iT
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where & is chosen such that all the singular points of G(s)
lie to the left of the line Re(s) = § in the complex s-plane.

11.4 GENERAL LAPLACE
TRANSFORM PAIRS

SIGNAL TRANSFORM REGION OF CONVERGENCE
§(t) 1 All s
u(t) 1/s Re {s} >0

-u¢t) 1/s Re {s} <0
(N1

DT W) 1/sh Re {s} >0

n-i .

e (- n
oD 2 1/s Re {s} <
e ot u(t) ;,__1_0‘_ Re {s} >a
-e-("t u(-t) s+_1a Re {s} <-a
n-1
t -at 1 -

-7 © u(t) ora)? Re {s} > -«

n-i
t -at 1

S - R } <-a
mDre Y s et
§ (t-T) e ST All s

[cos wtlu(t) Ssz? Re{s} >0

[sinw ¢]u(t) ST‘*iﬂw—oz Re{s} >0

[e‘“tcos ap tlu(t) (sitx(;‘Z g2 Re{s} > -a

[e_atsinwo tlu(t) @ Re{s} > -a
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11.5 OPERATIONS FOR
THE LAPLACE TRANSFORM

1). Linearity of the Laplace Transform:
L
If x,(t) <— X;(s) with region of convergence R

and x,(t) <—> X,(s) with region of convergence R,

then

L
axi(t) + bxAt) <—> aX;(s) + bXy(s)

with region of convergence containing R; n R,

2) Time Shiﬁin'i?:
If x(t) <—> X(s) with region of convergence (ROC)
=R, then,

L

x(t-t,) <«—> e St

° X(s) with ROC =R

3) Shifting in the s-Domain:

L
If x(t) «<—>  X(s) ROC = R,
then,
Sot L
e % x(t) <—> X(s-s,) with ROC R, =
R + Re {s ¢}

Note: The ROC associated with X(s-sy) is that of X(s),
shifted by Re{s,}. Thus, for any value s that is in
R, the value s + Re{s,} will be in R ;.
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For example

4) Time Scaling:
L

If x(t) <—> X(s) ROC = R,
then
L
x(at) «—— —L x[g] with ROC R; = %
|al
5) Convolution Property:

L
If x (t) <—> Xi(s) ROC = R
(and)

L

XZ(t) <> Xz(s) ROC = R2 )
then
L . 3
x1(t) * x2(t) <> Xy(s)X,(s) with ROC containing
R; N Ry
8) Differentiation in the Time Domain

L
If x(t) <> X(s) ROC = R,
then

ax(t) _ -

It <—> sX(s) with ROC containing R
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7) Differentiation in the s—domain:
400
X(s) =I x(tye St at

~00

Given:

Differentiating both sides:

+ o0
( _
d—’éé—s‘)— = J -tyx(t)e St at
Hence,
L

T dX(s) -
-t x(t) «——> S5 2L ROC =R.

8) - Integration in the Time Domain:

L
If x(t) <—> X(s) ROC = R,
then
' L xes)
J x(T)dT <—> S ROC contains
» R n {Re{s} > 0}

11.6 HEAVISIDE EXPANSION THEOREM

By the theorem,

Lt {%} , where q(s)=(s-a,)(s-a,). ..(s-am) and
p(s) = a polynomial of degree < m.

m p(a ) at

N o——~x €
n=1 q'(an)

(i.e., Heaviside Expansion Formula)
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11.7 FINAL AND INITIAL
VALUE THEOREM

Initial value theorem:

g(0%) =1im {sG(s)}

S0

Final value theorem:

g(») =1lim sG(s).
s+0

Note: All poles of sG(s) lie in the left-hand side of the
complex s-plane.
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CHAPTER 12

TWO PORT NETWORK
PARAMETERS

12.1 Z - PARAMETERS

12.1.1 IMPEDANCE OR Z-PARAMETERS

Impedance parameters are defined by the following two
sets of equations.

vy = Znil + Zuiz
V2 = zxpi1 + zZxnis
where v, and v, are acting as independent variables.

(Note: A general linear two-port network is being
considered.)

i i
1 2
1 e&—— Linear [——¢ 2
1'e network | ¢ 2"
-— —_—
T 1o

By setting i, and i, equal to zero, four impedance
parameters are defined as follows:
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12=0 11=o
ll 12—0 11—0 12
—_— -— —_— -—
v + e + F
1(EE: ' Vi WV,
S e /.
linear network
v
Z.,. = (Q)
yo
Open-circuit input Open-circuit reverse
impedance transfer impedance
i, i,=0 1,=0 T2
+ —e+ o— +
B - K2
- —e— or— =
v
= 2
z+22 i, ()
Open-circuit forward Open-circuit output
transfer impedance impedance

(Note: Since i, and i, are set equal to 0, Z-parameters are
also called open-circuit impedance parameters.)

12.2 HYBRID - PARAMETERS

12.2.1 HYBRID OR H-PARAMETERS

The usage of hybrid parameters is for the analysis‘. of
transistor circuits. The hybrid parameters are defined by
two sets of equations as follows:

hnli + hpv,

Vi

1, hali + hpve

where v, and I, are acting as independent variables.
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The hybrid parameters are determined by the use of
short-circuit and open-circuit conditions.

Hence,
V,=0 I,=0
i, i, i,=0 i,
— s e APpr——

+ +o— +
vl@__ v,=0 v, O
- 4 e -

. o
linear network
v, v,
h.= — (Q) h,.= —
il I, ;2 v,
Short-circuit input Open-circuit reverse
impedance voltage ratio (gain)
i, 1Z 11=0 1,
+ + o— +
20 V,=0 v, W)V,
2 ‘ —e Z
I I
= Z2 = -2
b= 1) h,, v, )
Short-circuit forward Open-circuit output
current ratio (gain) admittance

The hybrid parameters in a two-port network are defined as
shown in the network below.

where = resistance (Q) —\—e
= dependent voltage source é
= dependent current source @
= conductance (0)
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12.3 ADMITTANCE PARAMETERS
12.3.1 ADMITTANCE OR Y-PARAMETERS

Admittance parameters are described by the following
two sets of equations:

i yuvi + ypva

i2 = yavi + yava

Then each parameter is defined by setting v, or v, equal
to zero. Hence, Y-parameters are also called the
short-circuit admittance parameters.

Thus, by setting:

i,
—_— .

+ +
V1_('\Z |v2=0 v,=0 | YV,
P
linear network i,
i = —
y.= =& Y, v,
1n- v, ‘

Short-circuit reverse

Short-ci it i .
circult input transfer admittance

admittance
i, i, i i,
PR— - R— -
+ +
vl@__— v,=0 V1'°| E\,)_v2
i .
2a”= Vg' -2
‘ 1 yz‘z Vs
Short-circuit forward Short-circuit output
transfer admittance admittance
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12.4 Z,Y, AND H PARAMETERS
AND RELATIONSHIPS

Let us define the following matrices:

Zu Zw yu Y hn hp

[Z] = » [Y] = » [H] =
Zan Z2 ya Yz han haxp
then,Az =272y Zp- 2y, Zu’ Ay = YpY,y - Y12Y?_1, Ah = hjhy

= hyohn
are the determinants of [Z], [Y] and [H] respectively.

Now, the conversion between parameters are defined as
follows:

(1A) Z~+>Y = [zp -2, |(1B) Z+H = [Az 2z,
Az Az Z22 2
ZZa Zn Zn 1
| Az Az | | 222 Z22

(24) Y+Z = [yz -y |(2B) Y+H = [_1 -y, |
Ay Ay Yuu Y11
Y2z ¥Yn Yya Ay
LAy Ay | b!n Y11

(34) H+Z = [ Ah h, 7|(3B) H+>Y = [1 -hy|
‘ha; hyp hy; hy,
chy 1 hy Ah
_hn h22 _ b hll___
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CHAPTER 13

DISCRETE SYSTEMS
AND Z - TRANSFORMS

13.1 DISCRETE - TIME SYSTEMS
13.1.1 A DISCRETE-TIME SYSTEM

Input

(discrete —»—or

signals)

Discrete
Time
System

Output

——»——(discrete

signals)

Since discrete signals may be represented by a sequence of
numbers, knowing the characteristics of such a sequence is

essential.

The characteristics of some general sequences are

listed below:

1. Kronecker Delta Sequence:

1
§ (n)

e 2 -10 1

2. Unit Step Sequence:
1| 1} 1

-2 -1 0 1 2

é .l.“ n

> n
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11, n=0
6 (n) ‘[ 0, n=t1,%2,...

§(n-) = })’, r:e;zlsewhere
(Note: i is an arbitrary
integer.)
u(n) = 0’ n=:]é’—2’
1, n=0,1,2,...




3. Unit Alternating Sequence: u(n) = 0, n=:§’_2’
1 |1 -, n =
eoe 1 3000; L 0,1’2’ .
AR
-1 -1
» > == 3_2’ o
4, Unit Ramp Sequence: u(n) = g’r:F 1’1,2’
4
3
BN
10 1 2 3 4

13.2 FIRST - ORDER LINEAR
DISCRETE SYSTEM

A first-order linear discrete system is represented by
the linear first-order difference equation as follows:

y(n) + A;y(n-1) = Byu(n) + B,u(n-1) (1)

where u and y are denoted as the input and output of the
system, respectively.

If the input signal is applied at n = 0, then eq.(1)
becomes

y(0) =Byu(0) + Byu(-1) - A;y(-1)
where y(-1) is the initial condition of the system.

(Note: wu(-1) =0)

In general, where an input signal is applied ton =j,
then the response of the system is represented as follows:

y(j) = Bou(j) + Byu(j-1) - A y(-1
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Since B, u(j-1) =0
hence, y(j) =Byu(i) - Ay(-1)

(Note: The initial condition is defined by y(j-1).)
Summary :

In general, a linear discrete system is described by
the relationship as follows:

y(n) = Byu(n) + Byu(n-1) +...+ Biu(n—i) - Ay(n-1)
- A,y(n-1) -...- ANy(n—N)
where By ... B,

= constants
A ... A

N
and i and N = fixed non-negative integers.
If an input signal is applied at n =j, then
y(i) =Bou(d) -A,y(-1) - Ay(j-2) -...- Ay (-N)

(Note: wu(j-i) = 0 wherei =1,2,3,....)

13.3 CLOSED-FORM IDENTITIES

Closed-form identity 1is wuseful in . expressing the
response of a linear system.

Some generally used closed-form identities are given
below :

N m 1- rN+ !
1) Z r = —-I—_T where r # 1
m=0
N m r m m m+
2) zomr = W [1-r -mr +mr ]] where r # 1
m:
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3) 3 mr" = (—I_EI‘F[(1+r)(1—rN)—2(1—r)NrN—(1-r)2N7‘rN]

m:
wherer # 1

13.4 THE Z - TRANSFORM

When a continuous function of time g(t) is sampled at
regular intervals of period T, the usual Laplace transform
techniques are modified.

The diagrammatic form of a simple sampler together
with its associated input-output waveforms is shown below.

Sampler
R !
g(t) —e——" g'(t)
HER :
Period T
g(t)t : q' (t)l ||
t t

Note: The sampling frequency = fs = 7

Defining the set of impulse function 5T(t) by
GT(t) = I &(t-nT)
n=0

the input-output relationship of the sampler becomes

1
g(t) gt) + 8§, (1)

(e

L g(nT) «8§(t-nT).
n=0

105



Note: For a given g(t) and T, the function g'(t) is unique.
However the converse is not true.

The variable 'z' is introduced by means of the
transformation:

=
)

zZ=e

. and since any function of s can now be replaced by a
corresponding function of z, we have

G(z) = I g(nT) 2z
n=0

n

where G'(s) = G(z)

0
n
Hi=
5
N

and

The z operator can now be defined in terms of the Laplace
operator by the relationship

Z{gt)} = L {g"(t)}

or

Z {g(t)} = ZIresidues of [[Tl—] G(z)}
X -1
. l-e "z

The inverse z transform is

Z27HG(2)} = g'(t)

= 1 .1
7] (} G(z) * z dz

where the contour of integration encloses all the
singularities of the integrand.
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13.5 PROPERTIES OF Z - TRANSFORM

g(t)

1.

for

Z{gt)}= G(2)

Linearity: Af(t)+Bg(t)

Left shifting: g(t+mT)

Right shifting: g(t-mT)

T/t
. Summation: L g(mT)
m=0
Differentiating: tg(t)

. Integrating: t~1lg(t)

t

I gi(t-r)g,(r)
r=0

Convolution:

Initial value Theorem
g(0) =lim G(2)
Z|+oo
Final value Theorem:
g(®) =lim (z-1)G(z)

z +1

if (z—er(z) is analytic
z

> 1.
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AF(z)+BG(z)
m-1

2%G(z) - T 2% lg(rm)
r=0
= z™G(z) when g(rT) = 0,
0 <r <m-1

72" ™G(z)

[ o

z-1

-Tz & G(2)

dz

Z
_1 [ 6@
T J z dz

G1(2)G2(2z)
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13.6 METHODS OF EVALUATING
INVERSE Z - TRANSFORMS

1) Cauchy's residue theorem;
For t =nT,
g(nT) = I [residues of G(z)zn_lat zk]

all zk

where z, defines all of the poles of G(z)z" '

2) Partial fractions:

Expand G;Z) into partial fractions. The product of z

with each of the partial fractions will then be
recognizable from the standard forms in the table of z
transforms. Note however that the continuous functions
obtained are only valid at the sampling instants.

3) Power series expansion by long division using detached
coefficients: -

G(z) is expanded into a power series in z-! and the

coefficient of the term in z  is the value of g(nT).
i.e., the value of g(t) at the nth sampling instant.

13.6.1 THE Z TRANSFORM AS A MEANS
OF DETERMINING APPROXIMATELY
THE INVERSE LAPLACE TRANSFORM

Since Z=eTS
g1= T [1_v _avd _ advs _
2 |v 3 45 945 :
where Y = 1- g1
T 1+2z°1°

the series being very rapid in its convergence. Given G(s)
to find its inverse Laplace transform, the following
operations are carried out:
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1

2)

3)

4

5)

6)

Divide the numerator and denominator of G(s) by the
highest power of s, yielding as an alternate form for
G(s) (the quotient of two polynomials in s~ L.

Choose as a numerical value of T, which makes 27/T
much larger than the imaginary part of the poles of
G(s).

Substitute the alternative form for G(s) obtained in (1)

above; the expansion for s ™ can be determined from the
following short table of approximations.

Do not, at this stage, insert the numerical value for T
because tabulations with different intervals may be
required.

Divide by T.

Insert the chosen value for T and divide the numerator
by the denominator.

The coefficient of z " is the required value of the
function at t = nT.

S | Z-transform (approximation)

- 1+ 27
s 2‘[1-2:]

T2 1 + 1027 + z-z:l

§-2
12| O -771)2

-1 -
_3 + Z
§ [ -z
g T 1+ 20270 + 10222 + 20Z2°° + 2"
142 Tr-z71)
g-s | Tzt +uz-? + uz- + 27"
124 (1 - z-0)®

S—G« 6 Z_2 + 2z_3 + z-lc
K3 (1 -12-1)s

-7 -4 3z- + 32" + 2-
'8' 1-2-1)7 _
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13.7 Z - TRANSFORM PAIRS

Transform Pair Signal Transform ROC
§[n] 1 Al z
u[n] 1—}2':; lz| >1
1
ul-n - 1] T =71 IZI <1
- 8[n - m] z™m All Z except
9 Gf m > 0)
or o (if m
< 0)
1
o"uln] Tz 1z| > |of
n 1
-o ul-n - 1] T ezT 1z] < |o
n aZz?!
no ulnl T-az-D? 1z > |of
zZ-1
-naMu[-n - 1] (H:WT)T lz] < lof
. 1-[coswe]Z~?
[coswon] u[n] 1—[2cost°Z'1*7°_2 |z] >1
. sinwy]12-1
[singyn] ulnl] 1_[2[032%112_1_,, =llz| > 1
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CHAPTER 14

TOPOLOGICAL ANALYSIS

14.1 INCIDENT MATRIX

By definition, an augmented incident matrix Aa, is an
n(nodes) x b(branches) matrix of a directed graph of any
planar network, i.e.,

Aa = [a,.]
U nxp
where 1 when branch bj is incident to
node n, and the reference current,

ij i]., leaves the node.

-1 when branch bj is incident to
node n. and the reference current,

i]., enters the node.

0 when branch bj is not incident to
node ni.

The incident matrix Aa can be represented as:
b, b, bj... b].

Aa =

g8 8 2

H-: oo o
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Note: An incidence submatrix can be obtained by taking out
any one of the rows of the incidence matrix Aa.

14.2 THE CIRCUIT (LOOP) MATRIX

By definition, an augmented circuit matrix, Ba’ is an

2 % b matrix where 2 = loops and b = branches.

Hence, Ba = [b..]
Uexp

where -
1 when branch bj is in loop JLi and is
b - oriented in the same direction.

ij
9 -1 when branch bj is in loop JZ,i and

is oriented in the opposite direction.

0 when branch bj is not in loop Ri.

The circuit matrix can be represented as:

Byb b ... b
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14.3 FUNDAMENTAL (LOOP) MATRIX

The fundamental loop (circuit) matrix, B £ is defined

as a [b-(n-1)] x b matrix where b = branches and n =
nodes. i.e.,

B, = [b

¢ ]

1 b-(n-1)1 xb

where

1 when branch bj is in the fundamental
loop !Li and is oriented in the same

ij direction.
-1 when branch bj is in the fundamental
loop JLi and is oriented in the opposite

direction.

0 when branch bj is not in the fundamental

loop SLi .

Note: A fundamental loop cannot contain more than one
chord; a chord is any branch of a cotree and a
cotree is the set of all branches not in a tree. (A
tree is defined in Chapter 5.)

The matrix representation of B, is as follows:

f
by ba bs... b.... b
Ly ] b_
Be = o
L3
3
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CHAPTER 15

NUMERICAL METHODS

15.1 NEWTON’S METHOD

Newton's method is used to find the roots of a
polynomial equation.

Consider the equation:
F(s) = k,s* +k;s3 +k,s2 +k;s'+k, =0.

In order to determine the real value of s = s' such that
F(s) = 0, the Newton's method is used as follows:

Since all the coefficients of F(s) are of the same sign
and real, the complex roots of F(s) are complex conjugate
pairs and the real roots, if any, are negative.

Now, by inspection, we begin with a guess, s = s,
for the root. Alsolet s, = sy - hy where

s, = a closer approximation of the root obtained from s, and
-F(sy) _d
= - = =20 |l = =
ho S o S3 F'(So) and F'(s 0) ds F(s) s=s,
F(S)
¢ F(sg)
hO




Then, in general,

F(s )
S. =8, - = (i+1) = iteration of the initial
1+ i F'(s ) approximation s .
i.e., S, = the previous approximation (or guess) of the
root.
and Si+l = the new approximation of F'(S ), which is the derivative

of F(S) evaluated at S = S .

Finally, the iteration is stopped when Si+1 is

approximately equal to Si’ indicating that the value of Si is

the root s'.

15.2 SIMPSON’S RULE

Simpson's rule states that

x=b
~ h
J y(x)dx = §(y°+ 4y1+ 2y2+4y3+2y“ +...+ Zyn_2
Xp=a
+ tlyn_1 + yn)
where h = bn (note: n is even.)

and y, =y(a), y,=y(a+h), y, =y(a+2h), Y, = y(a+nb)=y(b)

Note: The more values between the limits of integration
taken, (the larger n is), the more accurate the
result will be.

Simpson's rule is a simple and reasonably accurate
method which can be used to write programs for digital
computers or programmable calculators. The flow chart
shown below is for Simpson's rule of integration.
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