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Abstract. The 19th century witnessed a dramatic freeing of the human in-
tellect from its naive assumptions. This development is particularly striking in
mathematics. New geometries were discovered which challenged and expanded
the familiar space of euclid, notably projective geometry and non-euclidean
metric geometries. Developments in algebra led to similarly earth-shaking dis-
coveries. This expansion of consciousness was accompanied by a desire to find a
higher unity in the growing diversity. Hermann Grassmann made a bold, early
attempt to bring the two domains together in his ”Science of extension” of
1844. Later in the century, Cayley and Klein contributed to this process by
their discovery that metric geometry could be constructed atop projective ge-
ometry. William Clifford introduced a geometric product combining the metric
inner product with Grassmann’s exterior product; the resulting structure has
become known as a Clifford or geometric algebra. A completely satisfactory for-
mulation of geometric algebra had to await the rigorous clarity of 20th century
mathematics.

The work presented here (the author’s Ph. D. thesis from the Technical
University Berlin, 2011) represents an attempt to bring this stream of 19th

century mathematics into the aforementioned rigorous, modern form, and to
apply the resulting thought forms to understand kinematics and rigid body
mechanics in the spaces under consideration (including euclidean, hyperbolic
and elliptic space). One guiding light in the treatment is the reliance on a pro-
jective geometric foundation throughout, particularly a consequent application
of the principle of duality. This projective approach guarantees that the result
is metric-neutral – the results are stated in such a way that they apply equally
well to the two non-euclidean geometries as well as euclidean geometry. And a
consequent consideration of duality leads to the recognition that this classical
triad must be extended by a fourth geometry, dual euclidean geometry.

Readers of the MPK will not be surprised to learn that dual euclidean geom-
etry has a close affinity with counter-space [in German, Gegenraum], a concept
which Rudolf Steiner introduced and developed, particularly in his natural sci-
ence lectures. That such a connection exists in the work presented here is not
surprising, as the initial impulse for this thesis was provided by the later works
of George Adams (for example, see [Ada59]), to whom the present publication
is dedicated. One of Adams’ great gifts was to show how the results of modern
science, particularly mathematical, when grasped with enlivened thinking, re-
veal deep, often unexpected, connections to the world and the human being –
in a manner reminiscent of Goethe’s reading the “open secrets” of nature. Such
insights can indicate fruitful directions for further research. In this spirit is the
current publication offered, with special thanks to Peter Gschwind for making
it possible.
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Preface

This thesis arose out of a desire to understand and simulate rigid body motion
in 2- and 3-dimensional spaces of constant curvature.The results are arranged
in a theoretical part and a practical part. The theoretical part first constructs
necessary tools – a family of real projective Clifford algebras – which represent
the geometric relations within the above-mentioned spaces with remarkable
fidelity. These tools are then applied to represent kinematics and rigid body
dynamics in these spaces, yielding a complete description of rigid body motion
there. The practical part describes simulation and visualization results based
on this theory.

Historically, the contents of this work flow out of the stream of 19th century
mathematics due to Chasles, Möbius, Plücker, Klein, and others, which success-
fully applied new methods, mostly from projective geometry, to the problem of
rigid body motion. The excellent historical monograph [Zie85] coined the name
geometric mechanics expressly for this domain1. Its central concepts belong
to the geometry of lines in three-dimensional projective space. The theoret-
ical part of the thesis is devoted to formulating and occasionally extending
these concepts in a modern, metric-neutral way using the real Clifford algebras
mentioned above.

Autobiographically, the current work builds on previous work ([Gun93])
which explored visualization of three-dimensional manifolds modeled on one of
these three constant curvature spaces. The dream of extending this geometric-
visualization framework to include physics in these spaces – analogous to how
in the past two decades the mainstream euclidean visualization environments
have been gradually extended to include physically-based modeling – was a
personal motivation for undertaking the research which led to this thesis.

1 although today there are other meanings for this term.
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Audience

The thesis is written with a variety of audiences in mind. In the foreground
is the desire to present a rigourous, self-contained, metric-neutral elaboration
of the mathematical results, both old and new. It is however not written for
the specialist alone. For those interested only in the euclidean theory I have
attempted to make it accessible to readers without background or interest in
the non-euclidean thread. To be self-contained, many preliminary results from
projective geometry and linear and multi-linear algebra are stated, with refer-
ences to proofs in the literature. To be accessible, most of the results are stated
and proved only for the dimensions n = 2 and n = 3, even when a general proof
might present no extra difficulty. The exposition includes many examples, par-
ticularly euclidean ones, in which the reader can familiarize himself with the
content. I have attempted at the ends of chapters to provide a guide to original
literature for those interested in exploring further. Finally, as a firm believer in
the value of pictures, I have tried to illustrate the text wherever possible.

Outline

Chapter 1 introduces the important themes of the thesis via the well-known
example of the Euler top, and shows how by generalizing the Euler top one is
led to the topic of the thesis. In addition to reviewing the key ingredients of
rigid body motion, it contrasts the historical approaches of Euler and Poinsot
to the problem, and relates these to the approach taken here. It discusses
the appropriate algebraic representation for the mathematical problems being
considered. It shows how quaternions can be used to represent the Euler top,
and specifies a set of properties which an algebraic structure should possess in
order to serve the same purpose for the extended challenge posed by the thesis.

Chapter 2 introduces the non-metric foundations of the thesis. The geometric
foundation is provided by real projective geometry. From this is constructed
the Grassmann, or exterior, algebra, of projective space. A distinction is drawn
between the Grassmann algebra and its dual algebra; the latter plays a more
important role in this thesis than the former. We discuss Poincaré duality, which
yields an algebra isomorphism between these two algebras, allowing access to
the exterior product of the one algebra within the dual algebra without any
metric assumptions.

Chapter 3 introduces the mathematical prerequisites for metric geometry.
This begins with a discussion of quadratic forms in a real vector space V and
associated quadric surfaces in projective space P(V). A class of admissable
quadric surfaces are identified – which include non-degenerate and “slightly”
degenerate quadric surfaces – which form the focus of the the subsequent de-
velopment.

Chapter 4 begins with descriptions of how to construct the elliptic, hy-
perbolic, and euclidean planes using a quadric surface in RP 2 (also known
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as a conic section in this case), before turning to a more general discussion
of Cayley-Klein spaces and Cayley-Klein geometries. We establish results on
Cayley-Klein spaces based on the admissable quadric surfaces of Chapter 3 –
which are amenable to the techniques described in the rest of the thesis.

In Chapter 5 the results of the preceding chapters are applied to the construc-
tion of real Clifford algebras, combining the outer product of the Grassmann
algebra with the inner product of the Cayley-Klein space. We show that for
Cayley-Klein spaces with admissable quadric surfaces, this combination can be
successfully carried out. For the 3 Cayley-Klein geometries in our focus, we
are led to base this construction on the dual Grassmann algebras. We discuss
selected results on n−dimensional Clifford algebras before turning to the 2-
and 3-dimensional cases.

Chapter 6 investigates in detail the use of the Clifford algebra structures
from Chapter 5 to model the metric planes of euclidean, elliptic, and hyper-
bolic geometry.2 The geometric product is exhaustively analyzed in all it vari-
ants. Following this are metric-specific discussions for each of the three planes.
The implementation of direct isometries via conjugation operators with special
algebra elements known as rotors is then discussed, and a process for finding
the logarithm of any rotor is demonstrated. A typology of these rotors into 6
classes is introduced based on their fixed point sets.

Taking advantage of the results of Chapter 6 wherever it can, Chapter 7 sets
its focus on the role of non-simple bivectors, a phenomenon not present in 2D,
and one which plays a pervasive role in the 3D theory. This is introduced with
a review of the line geometry of RP 3, translated into the language of Clifford
algebras used here. Classical results on line complexes and null polarities –
both equivalent to bivectors – are included. The geometric products involving
bivectors are exhaustively analyzed. Then, the important 2-dimensional subal-
gebra consisting of scalars and pseudoscalars is discussed and function analysis
based on it is discussed. Finally, the axis of a rotor is introduced and explored
in detail. These tools are then applied to solve for the logarithm of a rotor in
the 3D case also. We discuss the exceptional isometries of Clifford translations
(in elliptic space) and euclidean translations in detail. Finally, we close with a
discussion of the continuous interpolation of a metric polarity. We demonstrate
a solution which illustrates the power and flexibility of these Clifford algebra
to deal with challenging geometric problems.

Having established and explored the basic tools for metric geometry pro-
vided by these algebras, Chapter 8 turns to kinematics. The basic object is
an isometric motion: a continuous path in the rotor group beginning at the
identity. Taking derivatives in this Lie group leads us to the Lie algebra of
bivectors. The results of Chapter 7 allow us to translate familiar results of Lie
theory into this setting with a minimum of machinery. We analyse the vector
field associated to a bivector, considered as an instantaneous velocity state. In
deriving a transformation law for different coordinate systems we are led to the

2 The decision to begin with the 2D case rather directly with the 3D was based on the
conviction that this path offers significant pedagogical advantages due to the unfamil-
iarity of many of the underlying concepts.
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Lie bracket, in the form of the commutator product of bivectors. Finally, for
noneuclidean metrics, we discuss the dual formulation of kinematics in which
the role of point and plane, and of rotation and translation, are reversed.

The final theoretical chapter, Chapter 9, treats rigid body dynamics in the
3D setting. This begins with a metric-neutral treatment of statics. Movement
appears via newtonian particles, whose velocity and impulse are defined in a
metric-neutral way purely in terms of bivectors and the metric quadric. Rigid
bodies are introduced as collections of such particles. The inertia tensor is
defined and shown to be a symmetric bilinear form on the space of bivectors.
We introduce a second Clifford algebra, on the space of bivectors, whose inner
product is derived from this inertia tensor. We derive Euler equations for rigid
body motion, and indicate how to solve them. Finally, we discuss the role of
external forces and discuss work and power in this context.

Chapter 10 provides a brief introduction to dual euclidean geometry and its
associated Clifford algebra. It begins by showing that the set of four geome-
tries: euclidean, dual euclidean, elliptic and hyperbolic, form an unified family
closed under dualization. It compares the dual euclidean plane to the euclidean
plane via some elementary examples, and indicates some interesting research
possibilities for this geometry.

Once these theoretical results have been established, experimental results
based on this theory are presented in Chapter 11. The focus is on the non-
euclidean spaces, with the euclidean results being mainly useful as quality
control. First the two-dimensional case is handled. A variety of qualitative
behaviors are presented and discussed with reference to the theoretical results
already presented. Then the three-dimensional case is handled, and some be-
haviors not seen in the 2D case are shown and discussed. The presentation of
these results is accompanied by a description of visualization strategies and
tools developed to assist in the presentation and analysis of the results, in both
2D and 3D.

The concluding chapter, Chapter 12, reflects on the results presented and
provides an overview of innovative aspects, ranging from concrete to method-
ological.
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[MR98] Jerold Marsden and Tudor S. Ratu. Introduction to Mechanics and Sym-

metry: A Basic Exposition of Classical Mechanical Systems. Springer, New
York, 1998.

11



[Per09] Christian Perwass. Geometric Algebra with Applications to Engineering.
Springer, 2009.
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Chapter 1

Preview: the Euler Top

One of the main goals of this thesis, as sketched in the Forward, is to provide a
modern understanding of rigid body motion in the 3-dimensional non-euclidean
spaces of elliptic and hyperbolic geometry. A natural starting point for this
investigation is provided by the well-known example of the Euler top, one of
the simplest non-trivial examples of rigid body motion. This is a rigid body
in three-dimensional euclidean space, constrained to move around its center of
mass, and not subject to any external forces. Not only does this example serve
to identify the key components of the analysis of rigid body motion; we will
show below (Sect. 9.5.2) that the content of this thesis is a natural extension
of the Euler top when one removes the constraint that the motion has a fixed
point. Furthermore, the differing approaches to the Euler top represented by
Euler and Poinsot, also throws an important light on the choice of methods
adopted in this thesis.

The discussion here is not intended to be mathematically rigorous. Readers
for which the material is unfamiliar are encouraged to consult standard litera-
ture on rigid body mechanics such as [Arn78], Ch. 2. Proofs for all the results
presented here can also be obtained from the thesis itself by re-introducing the
constraint that the center of mass is fixed by the motion. See Section Sect. 9.5.2
for details. A much fuller account of the historical details presented here can
be found in [Zie85].

1.1 Euler and the analytic approach

The question of rigid body mechanics entered the mathematical literature with
the investigations of Euler and d’Alembert (working separately around 1760)
[Zie85]. The problem which they solved was: given the mass distribution of the
rigid body and its initial velocity, to find a path in the isometry group SO(3)
of rotations of R3, which describes the position of the body at each subsequent
moment of time. Each obtained a complete description of the motion of an Euler
top as the solution of a set of ordinary differential equations. The differential
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equations for the instantaneous velocity of the object became known as Euler
equations of the motion. Lagrange (1788) introduced a more abstract setting
in which the motion of the Euler top could be solved.

The key feature of all the analytic approaches is that attention is focused on
the isometry group of the rigid body rather than on the ambient space of the
rigid body.1 This is easy to overlook since the dimension of both spaces in the
case of the Euler top is 3. As a result, the analytic solution does not immediately
provide any detailed description of how the motion proceeds within the ambient
space of the body.

1.1.1 Poinsot and the geometric approach

This unsatisfactory state of affairs was addressed and remedied by Poinsot in
[Poi51] (English translation [Poi84]), based on a work first presented in 1834.
This work, made possible by the dramatic developments in geometry at the turn
of the 19th century notably in the school led by Monge (1746-1818), is based on
a geometric approach, in contrast to the analytic approach pioneered by Euler
and Lagrange. Poinsot first describes his dissatisfaction with the results of the
analytic approach:

...it must be allowed, that in all these solutions [of Euler, d’Alembert, and La-
grange], we see nothing but calculations, without having any clear idea of the
rotation of the body. We may be able by calculations, more or less long and com-
plicated, to determine the place of the body at the end of a given time; but we
do not see at all how it arrives there. [[Poi84], p. 2]

and goes on to describe his alternative approach and its advantages:

Therefore to furnish a clear idea of this rotatory motion, hitherto unrepresented,
has been the object of my endeavors. The result is an entirely new solution to
the problem of [the Euler top]: a genuine solution, inasmuch as it is palpable, and
enables us to follow the motion of the body as clearly as the motion of a point.
And if we would pass from this geometrical representation to calculation ... the
formulae required for the purpose are direct and simple, each of them expressing
a dynamical theorem of which we have a clear idea, and which proceeds at once
to its object. [[Poi84], p. 3]

Finally, Poinsot reflects on the success of his method as being a result of a
particular penetration of the phenomena with exactly the correct mathematical
concepts:

For we may remark generally of our mathematical researches, that these auxiliary
quantities, these long and difficult calculations into which we are often drawn, are
almost always proofs that we have not in the beginning considered the objects
themselves so thoroughly and directly as their nature requires, since all is abridged
and simplified, as soon as we place ourselves in a right point of view. [[Poi84], p.
4]

1 This is a modern formulation; the group concept had not yet been introduced in the
18th century.
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From this we can infer that the distinction between his method and that of
his predecessors is not only geometric vs. analytic; it is just as much concrete
vs. abstract. Poinsot’s achievement is based on his focusing on the concrete
conditions of the Euler top, and out of these concrete conditions, deriving a
description that avoids the complexities inherent in the more abstract approach
of Euler and Lagrange. His method is more comprehensive than the analytic
one, since using it he was able to derive all the results obtained by Euler and
Lagrange for the Euler top, but the opposite is not true.

1.2 Ingredients of the motion of the Euler top

Before proceeding further we provide a quick review of the ingredients of these
solutions of the Euler top. Fig. 1.1 shows a diagramatic representation of an
Euler top at a particular instant of its motion. In this case the rigid body is
represented by the yellow wireframe box, and consists of 8 particles positioned
at the corners of the box. That it is a rigid body means that the distances of
all particle pairs remains fixed under the motion. The other elements in the
figure will be discussed in the subsequent discussion of Poinsot’s contributions.

V

Ri

Ri
.

Fig. 1.1 The angular velocity V determines the linear velocity Ṙi of the particle of
the rigid body located at position Ri.
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The instantaneous motion of an Euler top is a rotation around an axis pass-
ing through the fixed point. Such an element is called an angular velocity and
is represented by the bronze axis labeled V. This angular velocity imparts to
each particle Ri a direction and intensity of motion represented by the vector
Ṙi := V × Ri. The angular momentum of the particle is then obtained by
Mi := miR× Ṙi where mi is the mass of the particle at Ri. One also defines
the kinetic energy of the particle as Ei := m

2 ‖Ṙi‖2. The absence of external
forces implies that both Mi as well as Ei is a conserved quantity.

When one sums over all the particles in the body, one obtains aggregate
momentum and kinetic energy for the body:

M =
∑
i

Mi, E :=
∑
i

Ei

These are naturally also conserved quantities.
Expanding out the summation for the energy yields an expression which

depends quadratically on the angular velocity V. One can express this depen-
dence in a symmetric bilinear form A, the inertia tensor of the body, and
arrive at the formula E = A(V,V). This in turn provides a similar form for
the momentum: M = A(V). Here, the occurrence of A represents the polar-
izing operator associated to a symmetric bilinear form. This shows that the
momentum is a dual vector with respect to the angular velocity.

By considering the fact that the momentum is conserved, one can derive the
Euler equations for the angular velocity in the body:

V̇c = A−1(Vc ×Mc) (1.1)

To obtain the motion of the rigid body as a path g in the Lie group SO(3),
the rotations of R3, one can then integrate ġ using the relation ġ = gVc.

1.2.1 Poinsot description

The description above essentially reflects the thought-process of the Euler ap-
proach to the Euler top. [Poi51] provides a much fuller geometric description
of this motion. The elements of this description are shown in Fig. 1.2. The
angular velocity is assumed to be given. Then the angular momentum, defined
as above by M = A(V) is an element of the dual space, hence a plane; it is
traditionally represented by the normal direction of this plane, in this case, the
red vertical axis. For a given choice of M, the set of all angular velocity V
which yield the same kinetic energy E is a quadric surface called by Poinsot
the inertia ellipsoid. It is shown as a white wireframe ellipsoid in the figure.

Poinsot provides a geometric understanding of how the angular velocity and
angular momentum evolve in R3. The path of the angular velocity vector, as
the rigid body moves, is called by Poinsot the polhode of the motion. Since
the energy E is conserved, the polhode is constrained to lie on the surface
of the inertia ellipsoid. On the other hand, conservation of the momentum
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Angular Momentum Angular Velocity

Herpolhode

Polhode

Inertial Ellipsoid

Invariant Plane

Fig. 1.2 The Poinsot description of the motion provides geometric interpretation to
the elements of the analytic description of the motion.

vector in space implies conservation of its length in body coordinate system:
‖A(V)‖ = k, which represents another, confocal ellipsoid. Hence the polhode
is the intersection of these two ellipsoids, a closed quartic curve on the inertia
ellipsoid. It is the cyan curve in the figure.

In the world coordinate system, where the momentum is fixed, the condition
that 〈V,M〉 = E represents a plane perpendicular to the angular momentum,
called by Poinsot the invariant plane, which appears in gray at the bottom of
the figure. The green curve in the invariant plane is the path of the angular
velocity in the world coordinate system, and was called by Poinsot the herpol-
hode. As the body moves, the angular velocity vector traces out the polhode on
the inertia ellipsoid and the herpolhode on the invariant plane. This means that
the inertia ellipsoid rolls on the invariant plane during the motion, its point of
contact being the current angular velocity. The herpolhode is a quasi-periodic
curve that, generically, fills in an annulus of the invariant plane, where the
inner (outer) boundary circle of the annulus corresponds to angular velocities
with minimum (maximum) speed.
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1.2.2 Generalizing the Euler top

One obtains the theme of this thesis if one replaces the condition that the
body has a fixed point, with the condition that the body is free to move in
a (3-dimensional) space of constant curvature. The details of this claim are
established in the introductory chapters of the thesis, where it is shown that
there are three such spaces – euclidean, elliptic, and hyperbolic space. Fur-
thermore, the isometry groups of these spaces are all 6-dimensional Lie groups
which contain SO(3) as a subgroup.

[Arn78], Appendix 2, provides a methodology to deduce and solve the Euler
equations for rigid body motion in an abstract setting which includes the three
spaces above. Arnold’s approach works with any Lie group; the role of the
inertia tensor is taken over by a left-invariant metric on the corresponding Lie
algebra. That is, if one has an inertia tensor, one obtains such a left-invariant
metric; but one can in fact work with the wider class of left-invariant metrics
and obtain and solve ODE’s. This is a useful approach for a first solution.

However, all the objections raised by Poinsot to the analytic approach ap-
ply here to the Arnold approach. All the calculations take place in the 6-
dimensional spaces of the Lie group and the Lie algebra. There is, a priori, no
geometric insight into how the motion unfolds in the underlying 3-dimensional
space where the rigid body and the observer are at home. Due to this limitation,
the current thesis adopts the attitude of Poinsot, and sets the goal of providing
a geometric description of the rigid body motion which as much as possible
refers to geometric entities in the underlying 3-dimensional space where the
motion occurs.

1.3 Algebraic representation

The goal of providing a Poinsot description of rigid body motion brings with
it the question of what mathematical representation is best-fitted to achieve
that goal. The historical work of Euler and Poinsot preceded the development
of modern algebra. The majority of the current literature on rigid body motion
employs linear algebra to represent the isometry groups and their action on the
points of the ambient space of the body. The current work departs from that
trend in its use of geometric (or Clifford) algebra for that purpose. The best
way to motivate this choice is to return to the example of the Euler top and
show how quaternions can be profitably used to model the rigid body motion.
Then, after this excursion, we discuss the ways this algebraic structure needs
to be extended to handle the spaces considered by this thesis.
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1.3.1 Quaternions

William Rowan Hamilton discovered quaternions in 1843. Our aim here is not
to provide an exhaustive account of quaternions, but just to present enough
results to indicate the direction followed in the sequel.

Recall some facts about quaternions. Begin with R4 with basis {1, i, j,k}.
Introduce a product structure on the basis elements:

12 = 1; i2 = j2 = k2 = −1

1 commutes with i, j, and k.

ij = −ji, jk = −kj, ki = −ik

Extend this product by linearity to all of R4. This yields an associative, non-
commutative algebra called the quaternions, written H. 1 is the identity ele-
ment.

Definition 1. For a quaternion a := a01 + a1i + a2j + a3k:

• as := a01 is the scalar part of a.
• av := a1i + a2j + a3k is the vector part of a.
• If a = av, a is an imaginary quaternion; the set of imaginary quaternions

is denoted IH.
• For a = as + av, a := as − av is called the conjugate of a.
• a · b = ab is the inner product of a and b.

• For non-zero a, a−1 :=
a

a · a
is the inverse of a.

• ‖a‖ :=
√

aa is the norm of a.
• If ‖a‖ = 1, a is a unit quaternion.

Remark 2. Verify that the definitions make sense. a · b ∈ R1. The inverse
satisfies a−1a = aa−1 = 1.

The set of unit quaternions can be identified with the 3-dimensional sphere
S3. We identify IH with R3 in the obvious way.

Let · and × be the inner and cross products, resp., on R3. Then for g,h ∈ IH
one can verify directly that:

gh = −g · h + g × h

Thus, the quaternion product combines the inner product with the cross prod-
uct of R3.

A unit quaternion g can be written as cos θ+sin θ(u) where u is a unit imag-
inary quaternion satisfying u2 = −1. Then evaluate the exponential function
as a power series to obtain:

g = eθu

For θ ∈ [0, 2π), this is a bijective mapping IH↔ S3.
Consider the product g(x) := gxg−1 = gxg for unit quaternion g and

imaginary quaternion x. Write g = cos θ + sin θ(u). Then one can show that
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g is a rotation of R3 around the axis u of an angle 2θ. Under this mapping, g
and −g give the same rotation. Hence, one obtains a map:

IH e (1:1)−−−−→ S3
g (2:1)
−−−−→ SO(3)

We review the prominent features of the configuration described above:

I. The quaternion product gh combines a symmetric and an anti-symmetric
part.

II. IH is a vector subspace of H, and S3 is a sub-group of H such the expo-
nential map e : IH→ S3 is locally a bijection and globally a covering map.
The nice properties of this map depend on the fact that the elements of
IH have scalar square.

III. The map S3 → SO(3) : g → g is a 2:1 covering of the rotation group of

R3.

1.3.2 The Euler top via quaternions

One can represent elements of SO(3) and its Lie algebra via quaternions. The
motion g becomes a path in S3; the angular velocity and momentum become
elements of IH. The Euler equations become:

ġ = gVc

Ṁc =
1

2
(VcMc −McVc)

Here all products are the quaternion product. We mention two advantages of
the quaternion approach:

1. The representation of isometries is geometric: the axis of a rotation r ∈ S3

is the imaginary part of r.
2. The representation is compact : an isometry is represented by 4 real num-

bers. Compare this to the matrix approach, where 9 real numbers are re-
quired. This compactness has significant advantages in numerical applica-
tions, for example, in solving differential equations, since one has many
fewer directions of moving away from the correct solution.

1.3.3 Quaternion-like algebras for spaces of constant
curvature

Motivated by these advantages, the current thesis incorporates algebras, anal-
ogous to the quaternions, corresponding to the larger isometry groups of the
spaces under investigation. It turns out to be possible to find algebras which
not only fulfill properties analogous to I, II, and III above, but which possess
further attractive properties.
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These algebras are obtained by introducing a graded algebraic structure in
which different grades represent different-dimensional subspaces. Such a graded
algebra is called a Grassmann algebra. The next step involves adding an inner
product, which reflects the underlying metric properties of the space, to yield
a Clifford algebra. The full power of this approach to represent a variety of
interesting spaces is only enabled when one works within projective space rather
than vector space. These are the mathematical foundations which form the next
four chapters of this study. There follow two chapters showing how to use these
algebras to do geometry in 2- and 3-dimensional spaces of constant curvature.
These tools then provide the basis for investigating kinematics and rigid body
mechanics in these spaces (Chapter 8 and Chapter 9).
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Chapter 2

Projective foundations

This chapter reviews the non-metric mathematical structures – projective space
and exterior algebra – required for the rest of the thesis. The choice of results
presented here is conditioned by the requirements of later chapters. Conse-
quently, particular attention is paid to establishing the principle of duality.

2.1 Projective geometry

Real projective n-space Let V be a real vector space of dimension (n+ 1),
and V∗ its dual space. Let 〈u,x〉 = u(x) represent the scalar product on V⊗V∗

given by the evaluation map of a dual vector (linear functional) applied to a
vector.

Then the n-dimensional projective space P(V) is obtained from V by in-
troducing an equivalence relation on vectors x,y ∈ V \ {0} defined by:
x ∼ y ⇐⇒ x = λy for some λ 6= 0. That is, points in P(V) correspond
to lines through the origin in V. We sometimes write this equivalence relation
x ≡ y if two vectors represent the same projective point. See also Sect. 2.4
below.

Remark 3. For most of this work, V = Rn+1 (or (Rn+1)∗) and P(V) = RPn
(or (RPn)∗), real projective space of dimensions n (or its dual). However, note
that in many contexts it is not considered as an inner product space, that is,
we do not assume it is equipped with an inner product. This differentiation will
become more clear in Chapter 3 where metrics are introduced.

2.1.1 Projectivities

We review some facts about projective transformations which will be important
in Chapter 5 since they provide the basis of the theory of isometries for the
metric spaces under consideration.
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Definition 4. Given four points a,b, c,d ∈ RP 1 with homogeneous coordi-
nates a = (a0, a1), etc.. The cross ratio of the four points, written (a,b; c,d) :=
|a, c||a,d|
|b, c||b,d|

, where .|a, c| denotes the determinant a0c1 − a1c0, etc.

Definition 5. A projectivity of RP 1 is a bijective map RP 1 → RP 1 which
preserves the cross ratio.

To obtain a similar notion for higher dimensions, we introduce an alternative
definition:

Definition 6. For n > 1, a projectivity is a bijective map RPn → RPn or
RPn → (RPn)∗ which preserves linear dependence, and linear independence,
of sets. The former is called a collineation, the latter, a correlation.

From this definition it is possible to deduce the following two theorems.

Theorem 7. A projectivity is uniquely determined by its action on a linearly
independent set of n+ 2 points.

Remark 8. Typically, these points are provided by n + 1 basis vectors ei and
the so-called unit point u. For our purposes, we choose the unit point to be
u :=

∑
i ei.

Theorem 9. A projectivity preserves the cross ratio of 4 collinear points.

For a proof, see [Spe63], §21.
The collineations form a group. This group is generated by a set of involu-

tions described as follows.

Definition 10. Let Z be a point and m be a hyperplane in RPn such that Z
is not incident with m. Then the harmonic homology with center Z and axis
m is the collineation HZ,m defined by:

HZ,m(P) = −〈Z,m〉P + 2〈P,m〉Z (2.1)

Fig. 2.1 A harmonic
homology with center Z
and axis m acting on
a point P. In gray, a
harmonic quadrilateral
determined by P,Z, and
S, which determines P′ as
“hamonic fourth point”
to other three points.
Other choices of this cross
ratio λ lead a centered
collineation with factor λ. Z

SP

P‘

m
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A harmonic homology fixes the center (linewise) and the axis (pointwise),
and its action on a point P is as follows: find the intersection S of the line k
joining Z with P, with the axis m. Then P′ := HZ,m(P) is the unique point
of k such that the point pairs (Z,S), (P,P′) separate each other harmonically.
See Fig. 2.1. For a proof see the discussion below of centered collineations.

Remark 11. The harmonic homology is a special case of a centered collineation,
a collineation of the form:

PZ,m,λ(P) = λ〈Z,m〉P + (1− λ)〈P,m〉Z (2.2)

A centered collineation has center Z and axis m as in the harmonic homology.
We say λ is the factor of the centered collineation. For λ = −1, one obtains the
harmonic homology; λ = 1 yields the identity; λ = 0, the projection onto Z;
λ = ∞, projection onto m. Notice that PZ,m,0 is not defined for P ∈ m, and
PZ,m,∞ is not defined for P = Z.

Theorem 12. For P′ = PZ,m,λ(P), (S,Z; P,P′) = λ.

Proof. WLOG we can assume Z is chosen so that 〈Z,m〉 = 1. Define x :=
〈P,m〉. Setting S = αP + βZ and solving 〈S,m〉 = 0 leads to S = P − xZ.
Assigning homogeneous coordinates (0, 1) to S and (1, 0) to Z leads then to
coordinates (x, 1) for P and (x, λ) for P′. Evaluating the cross ratio (S,Z; P,P′)
using Def. 4 yields the desired result. ut

Remark 13. There are various ways to parametrize the family PZ,m,λ; the one
given above is chosen since it behaves nicely with respect to orientation of fixed
points. For example, for positive λ, the point-pairs (P,P′) and (Z,S) do not
separate each other, so the collineation preserves order along each invariant
line. Correspondingly, fixed points P ∈m are mapped to positive multiples of
themselves; the opposite is true for negative λ. For λ = 0, P′ is not defined,
and for λ = ±∞, the freedom to choose the sign shows that it is impossible to
define an orientation in this case also.

Similar remarks apply for RP 2n; in odd dimensions there is no way to con-
sistently assign orientation to the fixed points using the formula, since all fixed
points are reversed by the centered collineation. A similar analysis shows that
Z is always mapped to a positive multiple of itself; this reflects the fact that for
all λ, a small neighborhood of Z is mapped to a small neighborhood of itself
with the same orientation.

Remark 14. Like any collineation, the harmonic homology has an induced ac-
tion on the dual space of hyperplanes. Viewed as a collineation of the dual
space, this is also a harmonic homology, with center m and axis Z. Thus, the
concept of harmonic homology is a self-dual one. One obtains the dual formula
by dualizing (2.1):

HZ,m(l) = −〈Z,m〉l + 2〈Z, l〉m (2.3)

This dual version will be important when we take up this theme again in
Sect. 4.6.
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2.2 Exterior algebra

Let V be a real vector space of dimension n. The exterior, or Grassmann,
algebra

∧
(V), is generated by the exterior product1 ∧ applied to the vectors of

V. The exterior product is an alternating, bilinear operation. The algebra has a
graded structure. The elements of grade-1 are defined to be the vectors of V; the
exterior product of a k- and m-vector is a (k +m)-vector, when the operands
are linearly independent subspaces. An element that can be represented as a
wedge product of k 1-vectors is called a simple k-vector, or k-blade. The k-
blades generate the vector subspace

∧k
(V), whose elements are said to have

grade k. This subspace has dimension
(
n
k

)
, hence the total dimension of the

exterior algebra is 2n.
Simple and non-simple vectors. A k-blade represents the subspace of V

spanned by the k vectors which define it. Hence, the exterior algebra contains
within it a representation of the subspace lattice of V. For n > 3 there are
also k-vectors which are not blades and do not represent a subspace of V. Such
vectors occur as bivectors when V = R4 and play an important role in the
discussion of kinematics and dynamics in Chapter 8 and Chapter 9.

Dual Grassmann algebra. The same construction can be applied to con-
struct

∧
V∗, the exterior algebra of the dual vector space V∗. This is the algebra

of alternating k-multilinear forms.

2.2.1 Determinant function∧n
(V) is a one-dimensional vector space. Let I be a basis element. Given a

basis {vi} for V, v1 ∧ v2... ∧ vn ∈
∧n

(V), hence v1 ∧ v2... ∧ vn = αI for some
non-zero α ∈ R. Define a function

4 : ⊗nV→ R by 4 ({vi}) := α

Then 4 is called the determinant function of
∧

(V). It lets us define a canonical

isomorphism between V and
∧n−1

(V∗).

Theorem 15. V ∼=
∧n−1

(V∗)

Proof. Given v ∈ V, then define ω ∈
∧n−1

(V∗) by

ω(v1,v2, ...vn−1) := 4(v,v1,v2, ...,vn−1)

Conversely, given such an ω, there is a unique v such that the above equation
is satisfied. Hence V ∼=

∧n−1
(V∗). ut

Remark 16. By abstract nonsense, this implies V∗ ∼=
∧n−1

(V).

1 Also called the outer or wedge product
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2.2.2 Projectivized exterior algebra

The exterior algebra can be projectivized using the same process defined above
for the construction of P (V) from V, but applied to the vector spaces

∧k
(V).

This yields the projectivized exterior algebra W := P(
∧

(V)). The operations
of
∧

(V) carry over to P(
∧
V), since, roughly speaking: “Projectivization com-

mutes with outer product”. That is, for two elements X,Y ∈
∧

(V):

P(X) ∧P(Y ) = P(X ∧ Y )

The difference lies in how the elements and operations are projectively inter-
preted. The k-blades of P(

∧
V) correspond to (k − 1)-dimensional subspaces

of P(V ). All multiples of the same k-blade represent the same projective sub-
space, and differ only by intensity ([Whi98], §16-17). 1-blades correspond to
points; 2-blades to lines; 3-blades to planes, etc.

2.2.2.1 Dual exterior algebra The algebra P(
∧
V∗) is formed by pro-

jectivizing the dual algebra
∧

(V∗). P(
∧
V∗) is the alternating algebra of k-

multilinear forms. By abstract nonsence, P(
∧
V∗) = (P(

∧
V))∗: projectiviza-

tion commutes with dualization. P(
∧
V∗) is naturally isomorphic to P(

∧
V);

again, the difference lies in how the elements and operations are interpreted.
Like P(

∧
V), P(

∧
V∗) represents the subspace structure of P(V), but turned on

its head: 1-vectors represent projective hyperplanes, while simple (n-1)-vectors
represent projective points. The outer product a ∧ b corresponds to the meet
rather than join operator. See also Fig. 2.4.

2.2.2.2 Notation alert In order to distinguish the two outer products of
P(
∧
V) and P(

∧
V∗), we write the outer product in P(

∧
V) as ∨, and leave

the outer product in P(
∧
V∗) as ∧. These symbols match closely the affiliated

operations of join (union ∪) and meet (intersection ∩), resp. Note, however,
they are reversed from some modern literature ([HZ91]).

2.2.3 Exterior power of a map

Given a linear map f : V → V, there is an induced grade-preserving map∧
(f) :

∧
(V) →

∧
(V) called the exterior power of f . Its action on a simple

k-vector a = ei1 ∧ ... ∧ eik is defined by

∧k(f) = f(ei1) ∧ ... ∧ f(eik (2.4)

For f : V → V∗, one defines a map
∧

(f) :
∧

(V) →
∧

(V∗) by using the wedge
in the dual algebra in the RHS of (2.4).

Remark 17. ∧n(f) gives the determinant of the matrix of f when f is expressed
in terms of a basis {vi} satisfying 4({vi}) = 1.
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2.2.3.1 The adjoint map Given f : V → V∗, construct the exterior power∧n−1
(f) :

∧
(V)→

∧
(V∗). By Sect. 2.2.1,

∧n−1
(f) can be considered as a map

V∗ → V. It is called the adjoint of f . We write f∗ :=
∧n−1

(f). With respect to
a basis, the matrix of f∗ is the “matrix of cofactors” of the matrix of f , which
isn’t surprising considering the role played in its definition by the 4 function.
For invertible f , f∗ is the unique linear map satisfying 〈u,x〉 = 〈f(x), f∗(u)〉.

Remark 18. The adjoint is sometimes defined by identifying V and V∗ using
a metric. See for example [DFM07], Sec. 4.3.2. We prefer to avoid the use of
metrics where they are not required. See related discussion in Sect. 5.10.

2.2.4 Equal rights for P(
∧

V) and P(
∧

V∗)

From the point of view of representing V, P(
∧
V) and P(

∧
V∗) are equivalent.

There is no a priori reason to prefer one to the other. Every geometric element
in one algebra occurs in the other, and any configuration in one algebra has a
dual configuration in the other obtained by applying the Principle of Duality
[Cox87], to the configuration. We refer to P(

∧
V) as a point-based, and P(

∧
V∗)

as a plane-based, algebra.2

Depending on the context, one or the other of the two algebras may be more
useful. Here are some examples:

1. Joins and meets. P(
∧
V) is the natural choice to calculate subspace joins,

and P(
∧
V∗), to calculate subspace meets. See Sect. 2.3.1.4.

2. Spears and axes. Lines appear in two aspects: as spears (bivectors in
P(
∧
V)) and axes (bivectors in P(

∧
V∗)). See Sect. 2.2.4.1.

3. Euclidean geometry. P(
∧
V∗) is the correct choice to use for modeling

euclidean geometry. See Sect. 5.3.
4. Reflections in planes. P(

∧
V∗) has advantages for kinematics, since it

naturally allows building up rotations as products of reflections in planes.
See Sect. 5.6.1.

We turn now to item 2 above, highlighting the importance of maintaining
P(
∧
V) and P(

∧
V∗) as equal citizens.

2.2.4.1 There are no lines, only spears and axes! Most of this work
is focused on the case V = R4. In this case, bivectors are self-dual. This has
interesting consequences for how they are interpreted.

Given two points x and y ∈ P(
∧
V), the condition that a third point z

lies in the subspace spanned by the 2-blade l := x ∨ y is that x ∨ y ∨ z = 0,
which implies that z = αx + βy for some α, β not both zero. In projective
geometry, such a set is called a point range. We prefer the more colorful term
spear. Dually, given two planes x and y ∈ W ∗, the condition that a third

2 We prefer the dimension-dependent formulation plane-based to the more precise
hyperplane-based. We also prefer not to refer to the plane-based algebra as the dual
algebra, since this formulation depends on the accident that the original algebra is
interpreted as point-based.
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plane z passes through the subspace spanned by the 2-blade l := x ∧ y is that
z = αx + βy. In projective geometry, such a set is called a plane pencil. We
prefer the more colorful term axis.

Spear Line Axis

Fig. 2.2 Three aspects of line: spear (all incident points); line qua line; and axis (all
incident planes).

Within the context of P(
∧
V) and P(

∧
V∗), lines exist only in one of these

two aspects: of spear – as bivector in P(
∧
V) – and axis – as bivector in

P(
∧
V∗). This naturally generalizes to non-simple bivectors: there are point-

wise bivectors (in P(
∧
V)), and plane-wise bivectors (in P(

∧
V∗).) Many of the

important operators of geometry and dynamics we will meet below, such as the
polarity on the metric quadric (Sect. 4.4), and the inertia tensor of a rigid body
(Sect. 9.3), map 〈P(

∧
V)〉2 to 〈P(

∧
V∗)〉2 and hence map spears to axes and

vice-versa. Having both algebras on hand preserves the qualitative difference
between these dual aspects of the generic term “line”.

Remark 19. It is possible to build up projective geometry by beginning with
the line as the primitive element and constructing points and planes from this
primitive element. This would then provide a third way to view a line, so to
speak, in its own right rather than built out of points or planes. This approach
for example can be found in [Sto09]. But this approach does not lend itself to
representing the subspace structure of RP 3 with Grassmann algebras.

2.3 Poincaré Duality

Our treatment differs from other approaches (for example, Grassmann-Cayley
algebras) in explicitly maintaining both algebras on an equal footing rather
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than expressing the wedge product in one in terms of the wedge product of the
other (as in the Grassman-Cayley shuffle product) ([Sel05], [Per09]). To switch
back and forth between the two algebras, we construct an algebra isomorphism
that, given an element of one algebra, produces the element of the second
algebra which corresponds to the same geometric entity of V∗.

This algebra isomorphism can be stated and proved in a coordinate-free
way using advanced techniques of modern multilinear algebra ([Gre67b], Ch.
6, §2). In this form the isomorphism is called the Poincaré isomorphism, and
the resulting equivalence, Poincaré duality. We derive it here using a particular
coordinate system which simplifies the exposition. We first show how this works
for the case of interest V = R4.

2.3.1 The isomorphism J

Each weighted subspace S of RP 3 corresponds to a unique element SW of
P(
∧
V) and to a unique element SW∗ of P(

∧
V∗). We seek a bijection J :

P(
∧
V)↔ P(

∧
V∗) such that J(SW ) = SW∗ . If we have found J for the basis

k-blades, then it extends by linearity to multivectors. This will be the desired
Poincaré isomorphism. To that end, we introduce a basis for R4 and extend it
to a basis for P(

∧
V) and P(

∧
V∗) so that J takes a particularly simple form.

Refer to Fig. 2.3.

2.3.1.1 The canonical basis A basis {e0, e1, e2, e3} of R4 corresponds to a
coordinate tetrahedron for RP 3, with corners occupied by the basis elements3.
Use the same names to identify the elements of P (

∧1
(R4)) which correspond to

these projective points. Further, let I0 := e0 ∧ e1 ∧ e2 ∧ e3 be the basis element
of P (

∧4
(R4)), and 10 be the basis element for P (

∧0
(R4)). Let the basis for

P (
∧2

(R4)) be given by the six edges of the tetrahedron:

Fig. 2.3 Fundamental
tetrahedron with dual
labeling. Entities in W
have superscripts; entities
in W∗ have subscripts.
Planes are identified by
labeled angles of two
spanning lines. A rep-
resentative sampling of
equivalent elements is
shown.

23 01e e=

02

31
e

e
=

12
03

e
e=

31

02

e
e

=

03

12

e
=

e

e3

e1

e0 e2

e1 E1=01 23e e=

e3 E3=

e0 E0=

e2 E2=

3 We use superscripts for P(
∧

V) and subscripts for P(
∧

V∗) since P(
∧

V∗) will be the
more important algebra for our purposes.
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{e01, e02, e03, e12, e31, e23}

where eij := ei ∧ ej represents the oriented line joining ei and ej .4 Finally,
choose a basis {E0,E1,E2,E3} for P (

∧3
(R4)) satisfying the condition that

ei ∨ Ei = I0. This corresponds to choosing the ith basis 3-vector to be the
plane opposite the ith basis 1-vector in the fundamental tetrahedron, oriented
in a consistent way.

feature P(
∧
V) P(

∧
V∗)

0-vector scalar 10 scalar 10

vector point {ei} plane {ei}
bivector “spear” {eij} “axis” {eij}
trivector plane {Ei} point {Ei}
4-vector I0 I0

outer product join ∨ meet ∧

Table 2.1 Comparison of P(
∧

V) and P(
∧

V∗) for V = R4.

We repeat the process for the algebra P(
∧
V∗), writing indices as subscripts.

Choose the basis 1-vector ei of P(
∧
V∗) to represent the same plane as Ei.

That is, J(Ei) = ei. Let I0 := e0 ∧ e1 ∧ e2 ∧ e3 be the pseudoscalar of the
algebra. Construct bases for grade-0, grade-2, and grade-3 using the same rules
as above for P(

∧
V) (i. e., replacing subscripts by superscripts). The results

are represented in Table 2.1.
Given this choice of bases for P(

∧
V) and P(

∧
V∗), examination of Fig. 2.3

makes clear that, on the basis elements, J takes the following simple form:

J(ei) := Ei, J(Ei) := ei, J(eij) := ekl (2.5)

where in the last equation, (ijkl) an even permutation of (0123).
Fig. 2.4 gives a graphical representation of Table 2.1, and the isomorphism

J.
2.3.1.2 Description of J Furthermore, J(10) = I0 and J(I0) = 10 since
these grades are one-dimensional. To sum up: the map J is grade-reversing
and, considered as a map of coordinate-tuples, it is the identity map on all
grades except for bivectors. What happens for bivectors? In P(

∧
V), consider

e01, the joining line of points e0 and e1 (refer to Fig. 2.3). In P(
∧

V∗), the
same line is e23, the intersection of the only two planes which contain both of
these points, e2 and e3. On a general bivector, J takes the form:

J(a01e
01 + a02e

02 + a03e
03 + a12e

12 + a31e
31 + a23e

23) =

a23e01 + a31e02 + a12e03 + a03e12 + a02e31 + a01e23

4 Note that the orientation of e31 is reversed; this is traditional since Plücker introduced
these line coordinates.

30



e1

e2

e0 e0 e1
e0

e0

e1

e1

e2

ΛW W*
J

Λ

Fig. 2.4 The standard Grassmann P(
∧

V) and its dual P(
∧

V∗) are related by the
Poincare isomorphism J.

The coordinate-tuple is reversed. See Fig. 2.2. This behavior is characteristic
of the situation in higher dimension, to which we now turn.

2.3.1.3 J in n-dimensions Here we generalize the construction above for
n = 4 to arbitrary dimension, to show how to construct the algebra isomor-
phism J with the desired property, and connect it to the principle of Poincaré
duality. We take up the issue of J again in Sect. 5.10 where we discuss it in
relation to alternative formulations involving a metric.

A subset S = {i1, i2, ...ik} of N = {1, 2, ..., n} is called a canonical k-tuple
of N if i1 < i2 < ... < ik. For each canonical k-tuple of N , define S⊥ to be the
canonical (n− k)-tuple consisting of the elements N \ S. For each unique pair
{S, S⊥}, swap a pair of elements of S⊥ if necessary so that the concatenation
SS⊥, as a permutation P of N , is even. Call the collection of the resulting sets
S. For each S ∈ S, define eS = ei1 ...eik . We call the resulting set {eS} the
canonical basis for P(

∧
V) generated by {ei}.

Consider P(
∧
V∗), the dual algebra to P(

∧
V). Choose a basis {e1, e2, ...en}

for P(
∧1 V∗) so that ei represents the same oriented subspace as the basis (n-

1)-vector e(i⊥) of P(
∧
V) represents. Construct the canonical basis (as above) of

P(
∧
V∗) generated by the basis {ei}. Then define a map J : P(

∧
V)→ P(

∧
V∗)

by J(eS) = eS⊥ and extend by linearity.
J is an “identity” map on the subspace structure of V: it maps a simple

k-vector B ∈ W to the simple (n − k)-vector ∈ P(
∧

V∗) which represents the
same geometric entity as B does in RPn. Proof: By construction, eS represents
the join of the 1-vectors eij , (ij ∈ S) in W . This is however the same subspace
as the meet of the n − k basis 1-vectors eij , (ij ∈ S⊥) of P(

∧
V∗), since ei is

incident with ej ⇐⇒ j 6= i.
From the construction of J we can consider it as a grade-reversing isomor-

phism P(
∧
V)↔ P(

∧
V∗) such that J2 = id. Strictly speaking, this is the iden-

tity only projectively, in a strict vector space interpretation, J(J(X)) = ±X
for an arbitrary k−blade X.
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The full significance of J will only become evident after metrics are intro-
duced. See Sect. 5.10.

We now show how to use J to define meet and join operators valid for both
P(
∧
V) and P(

∧
V∗).

2.3.1.4 Projective join and meet Knowledge of J allows equal access to
join and meet operations. We define a meet operation ∧ for two blades A,B ∈
P(
∧
V):

A ∧B = J(J(A) ∧ J(B)) (2.6)

and extend by linearity to the whole algebra. There is a similar expression for
the join ∨ operation for two blades A,B ∈ P(

∧
V∗):

A ∨B := J(J(A) ∨ J(B)) (2.7)

2.4 Remarks on homogeneous coordinates

We use the terms homogeneous model and projective model interchangeably,
to denote the projectivized version of Grassmann (and, later, Clifford) algebra.

The projective model allows a certain freedom in specifying results within
the algebra. In particular, when the calculated quantity is a subspace, then the
answer is only defined up to a non-zero scalar multiple. In some literature, this
fact is represented by always surrounding an expression x in square brackets
[x] when one means “the projective element corresponding to the vector space
element x”. Similarly, xR is used to represent “the 1-dimensional vector sub-
space corresponding to the projective point x”. We do not adhere to this level
of rigor here, since in most cases the intention is clear.

Some of the formulas introduced below take on a simpler form which take
advantage of this freedom, but they may appear unfamiliar to those used to
working in the more strict vector-space environment. On the other hand, when
the discussion later turns to kinematics and dynamics, then this projective
equivalence is no longer strictly valid. Different representatives of the same
subspace represent weaker or stronger instances of a velocity or momentum
(to mention two possibilities). In such situations terms such as weighted point
or “point with intensity” will be used. See [Whi98], Book III, Ch. 4. See also
Sect. 9.2.3.1 below, which discusses the use of homogeneous coordinates with
respect to the inertia tensor of a rigid body.

2.5 Guide to the literature

[PW01] (Chapter 1 and Section 2.2) provides a good overview of the background
material on projective geometry and exterior algebra. For detailed background
on exterior algebras, see [Wik], [Bou89], or [Gre67b]. For more on Poincaré
duality, consult [Gre67b]., Sec. 6.8. [Kow09] provides a good introduction to
projective geometry with a synthetic component.
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